Comment on "Bulk Superconductivity at 91 K in Single-Phase Oxygen-Deficient Perovskite $Ba_2YCu_3O_9 - \delta$ "

The coefficient of the electronic specific heat, the Sommerfield constant γ , figures importantly in the properties of superconductors. Cognizant of this, Cava *et al.*¹ recently estimated γ for the ceramic superconductor YBa₂Cu₃O_{9- δ} from critical-field and paramagneticsusceptibility data. They reported that the choice $3 \le \gamma \le 5$ mJ/(mole-Cu K²) is consistent with available data. However, as part of our study² of the heatcapacity jump near T_c , ³ we found the data in that Letter to be inconsistent with such a choice. In particular, the temperature-independent paramagnetic susceptibility of YBa₂Cu₃O_{9- δ}, as reported in the caption of Fig. 3 in Ref. 1, is $\chi_0 = 3.1 \times 10^{-4}$ emu/(mole-Cu Oe). The relationship between γ and the spin susceptibility in the free-electron model yields

$$\gamma = \frac{1}{3} (\pi k_{\rm B} / \mu_{\rm B})^2 \chi_{\rm s} = 23 \text{ mJ} / (\text{mole-Cu } \text{K}^2).$$
(1)

Core corrections increase this to 30 mJ/(mole-Cu K^2), outside the range reported by Cava *et al.*¹ by a factor of 6–10.

We comment here that a considerably larger value of γ , chosen to be consistent with the heat-capacity jump, leads to estimates that agree with measured values to within 20%. In Table I, we list the input parameters used in the analysis. Using these parameters and standard expressions⁴ for type-II superconductors in the dirty limit, we report the critical fields and characteristic lengths for YBa₂Cu₃O_{9- δ} in Table II, along with measured values when available. The density of states corresponding to our choice for γ is $g(E_{\rm F})=4.5$ states/(eV Cu-atom).

The density of states is rather large and the Ginzburg-Landau coherence length quite small. These imply a large effective-mass enhancement. If we take the density of carriers to be $n \approx 9 \times 10^{21}$ cm⁻³, as suggested by recent ac Hall measurements,⁶ we find $k_{\rm F} = 6.4 \times 10^7$ cm⁻¹ and $m^*/m = 1.92 \times 10^5 \gamma/k_{\rm F} = 9.0$. These values lead to a BCS coherence length of 12 Å and a transport mean free path $l_{\rm tr} = 16$ Å, in agreement with $\xi_{\rm GL}^d$. The calculated London penetration depth is about 1700 Å. Note that these give $r_s/a_0 = 5.6$ so that exchange effects should be very important. Including a Landau diamagnetic correction to the χ_s in Table II gives an exchange enhancement of 1.8.

TABLE I. Measured parameters.

Quantity	Value	Source
Resistivity at T_c , ρ Sommerfeld constant, γ	$\frac{200 \ \mu \ \Omega \ \text{cm}}{3 \times 10^3 \ \text{erg/cm}^3 \ \text{K}^2}$	Ref. 1 This work
Critical temperature, T_c Specific heat jump, ΔC_p	90 K $4 \times 10^5 \text{ erg/cm}^3 \text{ K}$	Ref. 3 Ref. 2

TABLE II. Comparison of quantities derived from the parameters of Table I with measured values. All quantities in the equations are in cgs units except ρ , which is in ohm centimeters.

Formula	Calculated value	Experimental value
$\xi_{\rm GL}^{d}(0)$	12 Å	
$=8.6 \times 10^{-7} (\gamma \rho T_c)^{-1/2} \text{ cm}$ $\lambda d_{\text{GL}}^{d}(0)$ $=6.4 \times 10^{-3} (\rho/T_c)^{1/2} \text{ cm}$	960 Å	≈ 1400 Å ª
$\kappa_{\rm Gl}^d(0) = \lambda_{\rm Gl}^d(0) / \xi_{\rm GL}^d(0)$	82	
$H_c(0) = 2.4 \gamma^{1/2} T_c$ Oe	12 kOe	
$H_{c1}(0)$	450 Oe	400 Oe ^b
$=H_c(0)\ln(\kappa_{\rm GL}^d)/2^{1/2}\kappa_{\rm GL}^d$		
$(dH_{c2}/dT)_{T_c}$	-27 kOe/K	-(13 to 50)
$= -4.5 \times 10^4 \gamma \rho \text{ Oe/K}$		kOe/K ^{c,d}
$\chi_s = 1.37 \times 10^{-9} \gamma$	4.1×10^{-6}	5.0×10 ⁻⁶ e
$\Delta C_p / \gamma T_c = 1.43$		1.48

^aG. Aeppli, private communication.

^bP. M. Grant, R. B. Beyers, E. M. Engler, G. Lim, S. S. P. Parkin, M. L. Ramirez, V. Y. Lee, A. Nazzal, J. E. Vazquez, and P. J. Savoy, Phys. Rev. B **35**, 7242 (1987).

^cReference 3.

^dReference 5.

^eReference 2.

These revised figures indicate that this high-temperature superconductor is well described by a weakcoupling, type-II superconductivity model, just at the dirty limit. The pair size is not yet comparable with the electron-electron distance—in short, there is nothing unusual in the results so far except the value of T_c .

This work was supported in part by the Illinois Materials Research Laboratory, Grant No. NSF-DMR-86-12860.

M. B. Salamon and J. Bardeen

Department of Physics and Materials Research Laboratory University of Illinois Urbana, Illinois 61801

Received 16 June 1987

PACS numbers: 74.70.Ya, 74.30.Ci

¹R. J. Cava, B. Batlogg, R. B. van Dover, D. W. Murphy, S. Sunshine, T. Siegrist, J. P. Remeika, E. A. Rietman, S. Zahurak, and G. P. Espinosa, Phys. Rev. Lett. **58**, 1676 (1987).

²S. E. Inderhees, M. B. Salamon, T. A. Friedmann, and D. M. Ginsberg, Phys. Rev. B **36**, 2401 (1987).

 3 M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu, Phys. Rev. Lett. **58**, 908 (1987).

⁴T. P. Orlando, E. J. McNiff, Jr., S. Foner, and R. Beasley, Phys. Rev. B **19**, 4545 (1979).

⁵T. P. Orlando, K. A. Delin, S. Foner, E. J. McNiff, J. M. Terascon, L. H. Greene, W. R. McKinnon, and G. W. Hull, Phys. Rev. B **35**, 7249 (1987).

⁶C. F. Gallo and K. V. Rao, private communication.