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Defect Core Structure in Nematic Liquid Crystals
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The core structure of half-integer wedge disclinations in nematic liquid crystals has been investigated
within the Landau-de Gennes theory, by solution of the appropriate Euler-Lagrange equations. Close to
the nematic-isotropic transition the energy density exhibits a domain-wall-like structure around the core
which disappears at low temperatures. The inner core does not consist of isotropic fluid, and the core is

heavily biaxial at all temperatures.

PACS numbers: 61.30.—v, 61.70.Ga

Nematic liquid crystals owe their name to the Greek
word for thread. ' The threads in question, however, are
not, as might be thought, the molecules themselves, but
rather defect lines along which the nematic director i is
not well defined; they present the most dramatic optical
signature of nematic behavior. Defects in liquid crystals
have been the subject of much interest, partly because of
their striking appearance, and partly because their com-
plexity has been an ideal topic for study by homotopy

theorists. Topological studies, however, cast no light on
the nature of the core region of the defect, which de-
pends in addition on details of material properties of par-
ticular nematics and which hitherto has remained com-
paratively unexplored. In this Letter we make the first
steps towards a theory of defect core structure.

Nematic liquid crystals are usually described by a
traceless symmetric tensor order parameter Q;, . In uni-
form systems, however,

Q;J =Q (3n; n~
—6;J ).

The Frank-Oseen picture of nonuniform nematics constrains Q;J to be of this form. This hydrodynamic description of
nematic deformation describes the asymptotic behavior far from a defect, but fails close to the singularity in the n field
which occurs at a disclination core. To describe this regime, it is necessary to work with the full order parameter QJ in
the context of the Landau-de Gennes theory. In the limit of a weakly nonuniform system, this description reduces to
the hydrodynamic picture.

The quantity Q;J exhibits no anomalous behavior at the singularity of the n field and the resulting Euler-Lagrange
equations remain quasilinear. In contrast, the Frank-Oseen picture and extensions thereof give rise to cumbersome
Euler-Lagrange equations, which are nonlinear in the gradients.

The system is described by the Landau —de Gennes free energies Fb„lkand Fk;„,where

Fb„~k=AtrQ + —,
' BTrQ + —,

' CTrQ,

QlJ Q/J +L ~Q/J Qlk +L Q/j Q/k
2 3

k t) k t) J t) k t) k

(2a)

(2b)

and the summation convention is assumed. The constraints Q;J =QJ; and trQ =0 are taken into account by the intro-
duction of the Lagrange parameter tensor:

+ij ~O~ij &ij k ~k.

The full free-energy functional

F(Q,A) =Fb„lk+2tr(AQ)+Fk;„

is then minimized with respect to Q and A, yielding the nine coupled Euler-Lagrange equations

[L~6 I+ (L2+L3)8X tl ]Q —[(4+trQ ) I+BQ]Q =A. (5)

Equation (5) can be put into tractable form by elimination of the constraint forces ko and Xk, leaving five coupled equa-
tions for five independent unknowns, which we take to be Q„,Q„~,Q„,Q~„and Q„.

For calculational purposes, it is convenient to introduce a scaling in which free energy is measured in units of
8 /(9C), A =9AC/8 defines the temperature scale, and length is measured in units of g =(9CL~/8 ) 'J, the charac-
teristic scale for order-parameter changes. In these units, the bulk nematic-isotropic transition TN& occurs at 4 =

3 to
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a nematic state in which Q =1. Below T*, A =0, the
isotropic state ceases even to be metastable. In our cal-
culations, L2+L3 =3L&, which is roughly speaking in the
experimental range.

In this Letter we discuss wedge disclination lines. The
line is in the z direction, and we seek solutions to Eq. (5)
independent of z. Far from the disclination core their
director n lies in the x-y plane. Traveling along a closed
path around the line rotates the director through an an-

gle 2m+, where m, which is integral or half integral, is
the disclination index. We study here the cases m

We now generate the asymptotic values Q;~(r ee, g)
(with use of cylindrical polar coordinates), from n
=(cosmo, sinm0, 0) and Eq. (1). We solve Eq. (5) by
standard relaxation techniques.

All the solutions we discuss have the form

Q ~ Q.y
Q= Qv K~

0 0 Q„

with three free parameters. The symmetry of Eq. (5),
subject to the wedge disclination boundary conditions,
guarantees the existence of such a three-parameter ("un-
broken symmetry") type for m =+ —,

' . There also exist
five-parameter ("broken symmetry") solutions. These
solutions can be classified into two types, depending on
their symmetries with respect to reflections and combina-
tions thereof in the x-y and x-z planes. '

The solutions to Eq. (5) have a number of striking
features. In Fig. 1 we plot the three eigenvalues of the
matrix Q along the y =0 axis for the m = ——,

' defect at
temperature A =0.25. These features are roughly azi-
muthally symmetric and are preserved for the m =

2 de-

2.5

2.0

1.5

e(x,y) = —f —,
' & tr(Q')+ —,

' C[tr(Q )] 'I. (7)

This quantity shows how the system distributes the strain
imposed on it by topological constraints. We show in

Fig. 2 the free-energy surface e(x,y ) for A =0.25,
m = —

2 . The picture shows an outer core region, in

which the triangular symmetry of this defect is just dis-
cernible, and an inner core of diameter =10( which is

essentially circular. What is dramatic here, however, is
the crater structure of the surface, with a minimum at
the center, and a rim separating the inner and outer
cores. The quantitative details of this picture are rep-
resented in Fig. 3, which shows e(0,y), a typical slice
through the crater.

For the m = —,
' defect, the inner core structure is al-

most identical, although the outer core structure now
reflects the diA'erent symmetry of this defect. As the

feet. Outside about 10( from the defect line, the tensor
order parameter essentially takes the form (1), although
the magnitude of the scalar Q(r) is reduced from its
asymptotic value. Inside this region the order parameter
becomes increasingly biaxial, in that the degeneracy be-
tween two of the eigenvalues is broken. On a ring
around the core, of diameter =2(, the liquid crystal is
maximally biaxial; one of the eigenvalues is now zero.
However, over the whole defect, Q„shows the least
change from its bulk value. For this case, Q„(core)
=0.4Q„(bulk). In the very central core region, the or-
der parameter once again approximately takes the form
(1). However, now the symmetry axis is the defect axis
itself, and as compared with the bulk, the order parame-
ter has changed its sign.

These features remain qualitatively similar if the tem-
perature changes, and for m =

2 defects. Very close to
TN(, A = —, , the reduction in Q„becomes larger. In
contrast, at lower temperatures the core becomes small-
er, and Q„remains relatively impervious to the presence
of the defect, e.g. , at A = —1, Q„(core)=0.8Q„(bulk).

Another quantity of interest is the free-energy density
e(x,y), which can be derived, with use of a viriallike for-
mula, from Eqs. (4) and (5):
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FIG. l. Eigenvalues of Q along the slice x =0, for m = ——,',
A =0.25, and length scale measured in units of g.

FIG. 2. Energy surface g(x,y) in the region —12
& x,y & 12 for the same defect as in Fig. 1, showing the crater
structure.
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FIG. 3. Energy density along the slice x =0 for the same de-
fect. At this temperature eb„ik= —0.60 in these units.

temperature is increased, the rim height and extent both
increase; nevertheless, the defect remains finite at TNi.
The minimum in the free-energy intensity is always close
to zero, which in our units is the (metastable) bulk iso-
tropic free energy. At lower temperatures, however, the
rim height decreases until finally, around A = —1, this
structure is replaced by a single peak structure in
e(x,y).

We now comment on these results. The crater struc-
ture in e(x,y) found for A & 0 is presumably related to
the double-well structure of Fb„1q(Q), as described by
Eq. (2a) in the same regime. In some weak sense the
core of the disclination is attempting to find the isotropic
minimum, and the rim of e(x,y) corresponds to a
nematic-isotropic interface. This picture of the disclina-
tion core was proposed some time ago on phenomenologi-
cal grounds. However, below 4 =0, the minimum at
Fb„tk(Q=0) disappears, and the disappearance of the
crater structure at low 4 is clearly related to this. We
note nevertheless that the relation cannot be too close,
because the crater structure still persists below 4 =0. A
simple picture of a disclination core consisting of isotro-
pic fluid was put forward some time ago by Fan. '' This
model exploits the analogy between disclination cores
and vortex cores in superfluid He which are known to
contain normal Auid. The crater structure of e(x,y)
gives it partial support.

However, examination of the eigenvalues of Q inside
the core shows that the core is never isotropic, even when
the structure of e(x,y) suggests that it might be. Rath-
er, the topology has a minor eAect on Q„(which always
remains an eigenvalue in our calculations), decreasing
dramatically the two eigenvalues in the x-y plane. The
net eITect is that inside the core the nematic acts as

though it were constrained not to lie in the direction of
the disclination line. In the outer core, on the other
hand, the order parameter has the same structural form
as it has in the bulk, with the degree of order asymptoti-
cally approaching that in the bulk. In between there is a
matching region where the liquid crystal is biaxial.
There is a ring around which the biaxiality is maximal.
This is all that the topology demands. Only if the ring
shrinks to a point does the condition trQ—:0 insist that
Q—:0 at that point. Only then would the disclination
core be isotropic.

The picture presented in this Letter has experimental
consequences. In particular, core size should be affected
by magnetic and electric fields directed along the core.
It may also be possible to investigate the core structure
more directly, perhaps with liquid crystals consisting of
macromolecules such as viruses.

In conclusion we have used the Landau-de Gennes
formalism to make an exact calculation of the structure
of a wedge disclination in a nematic liquid crystal. The
core is always biaxial, sometimes contains structures
which resemble an isotropic-nematic interface, but never
contains a core of isotropic fluid.
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