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Preroughening Transitions in Surfaces
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We introduce a new type of phase of crystal surface and interfaces. This disordered flat phase appears
intermediate between the familiar flat and rough phases in the presence of short-range interactions of a

type common in experiments. The surface remains flat on average although it contains a disordered ar-
ray of steps. The preroughening transition into the disordered flat phase belongs to a new universality
class. Finite-size-scaling calculations for the restricted solid-on-solid model confirm the existence of the
disordered flat phase and the preroughening transition.

PACS numbers: 68.35.Rh, 64.60.Fr, 68.35.Md, 82.65.Dp

Crystal surfaces and interfaces undergo several types
of phase transitions. One type is the roughening transi-
tion, where thermodynamically excited steps transform a
flat surface into a terraced mountainlike landscape. Con-
ventionally this is a Kosterlitz- Thouless (KT) transi-
tion. The step free energy vanishes with an essential
singularity. In the rough phase, the height-height corre-
lation function diverges logarithmically. Its amplitude,
1/trig, measures the roughness of the surface. Kg =tr/2
at the KT transition and decreases monotonically with
temperature. Numerous numerical and exact results for
solid-on-solid (SOS) models ' and experimental evi-
dence have confirmed this.

Here we show that a novel type of phase appears inter-
mediate between the flat and rough phases in the pres-
ence of short-range interactions between the steps. We
call this the disordered flat (DOF) phase, because the
surface remains flat on average although it contains a
disordered array of steps. First the step free energy van-
ishes at the preroughening transition from the flat into
the DOF phase. Next the surface undergoes a KT tran-
sition from the DOF phase into the rough phase. Before
we present our results for the restricted solid-on-solid
(RSOS) model, we discuss the mechanism that stabilizes
the DOF phase in general.

A flat surface contains thermodynamically excited ter-
races where the surface is higher or lower (by one unit).
The free energy of a terrace is proportional to the length
of its edge (the step length). This determines the size of
a typical terrace, since its free energy is of order kBT.
The terraces increase with temperature because meander
entropy reduces the step free energy. This continues un-
til temperatures at which the terraces start to see each
other. The topological rules that govern how steps in-
tertwine and the nature of the short-range interactions
between steps become the limiting factors in the increase
in entropy and determine the universality class of the
transition —a KT transition in the conventional case,
when hard-core repulsion between steps dominates.

Most studies considered only nearest-neighbor (nn) in-
teractions. The DOF phase appears when we merely ex-

tend the range of the interactions, such that the further-
than-nn columns prefer to be at the same height, just as
nn columns do. Such interactions must be common in
experimental systems. It is important to distinguish be-
tween up and down steps, i.e., to acknowledge the direc-
tion of the change in height. In Fig. 1 we denote this by
arrows along the steps: When one looks in the direction
along the arrow, the height to the left of the step is (one
unit) lower. The nn interactions contribute only to the
step energy. They are blind to the arrows. The further-
than-nn interactions can look across two or more steps.
They imply a short-range repulsion between steps with
parallel arrows, but an attraction (or no interaction, like
in the RSOS model discussed below) between steps with
opposite arrows. In the extreme case when this interac-
tion is infinitely strong, steps with parallel arrows are
forbidden to approach each other closer than the interac-
tion range, while steps with antiparallel arrows can ap-
proach each other at will. So the meander entropy is
larger in configurations where up and down steps alter-
nate, Fig. 1(a), than in configurations where they form a
staircase, Fig. 1(b). At temperatures high enough that
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FIG. 1. Surface configuration with (a) nested up-down steps
and (b) up-up steps.
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the terraces intertwine, the surface prefers a structure
where the steps have an up-down-up-down order.

Our results for the RSOS model show that this entro-

py difference is sufficient to stabilize the DOF phase,
with a nonzero up-down-up-down step order parameter.
The DOF phase represents a new type of surface recon-
struction with randomly rather than periodically ar-

ranged steps. Only the arrows have long-range order.
In SOS models, the surface is characterized by inte-

ger-valued column-height variables h(r). In the RSOS
model, nn columns r and r' are allowed to differ by at
most one, h(r) —h(r') =0, +'1. This restriction retains
the effect that we want to study, while it allows high-
accuracy numerical calculations. We consider the Ham-
iltonian

HRsos= It+&, , ) 6(l &(r) —h(r')
l

—1)—Lg&, , i B(l h(r) —h(r")
l

—2).

(r, r') denotes nn bonds on a square lattice: (r, r") denotes next-nearest-neighbor (nnn) bonds; 8(x) =1 when x =0
and vanishes otherwise. Energies are measured in units of —1/kHT. L )0 favors equal column heights of second
neighbors.

The steps follow the bonds of the dual lattice and form closed loops. To distinguish their up or down direction, we
place arrows along these loops, as in Fig. 1. At each intersection of loops the flux of arrows must be equal to zero. K is
the energy of a loop element and L favors an alternating arrow order at loop intersections.

To expose the order parameter of the DOF phase, we distinguish between loops and arrows. Associate an Ising spin
s(r) = ~ 1 to each column. Each Ising Bloch wall forms a closed loop and represents the presence of a step. Next con-
sider the body-centered solid-on-solid (BCSOS) model (the six-vertex model). This is a special SOS model with an ar-
row (a step) on every bond of its lattice. We rewrite our partition function as

Z&tsos=gb&, &&exp
—,
'

Kg&, , ) (s(r)s(r')+ l1 Zacsos(is(r)j, L). (2)
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FIG. 2. Phase diagram of the RSOS model. L and K are
proportional to 1/(kaT).

s(r) represents the parity of the column height at r. The
conventional BCSOS model has a rigid lattice. In (2)
the annealed Ising-Bloch-wall structure plays the role of
BCSOS lattice. The Ising Bloch walls are its bonds and
the wall intersections its vertices. This lattice has a
two-sublattice structure; the column heights are even on
one sublattice and odd on the other. K governs the
Ising-type order, i.e., the structure of the annealed
BCSOS lattice. L governs the BCSOS-type order. This
leads to the phase diagram shown in Fig. 2.

In the limit K —~ the Ising spins are antifer-
romagnetically (AF) ordered. Each bond contains an
Ising Bloch wall. The model reduces to the exact solv-
able BCSOS model on a square lattice. For exp(L) ) 2,
the surface is flat; the column heights alternate between

!
two values. For exp(L) &2, the surface is rough. The
roughening transition is a KT transition.

For K&(0, the Ising spins remain AF ordered. The
Bloch walls still form a square array, but with missing
bonds (closed loops) at length scales smaller than the
Ising correlation length. Such imperfections wi11 not
change the universality class of the roughening transi-
tion.

For K=O, the Ising spins are disordered. The Bloch
walls form a disordered array. Besides many disconnect-
ed finite clusters, one infinitely large Bloch-wa11 cluster
remains, because long-range ferromagnetic Ising-spin
order remains absent. This backbone cluster sets the
roughness of the surface. The BCSOS model on the
backbone undergoes a conventional roughening transi-
tion. Its rough phase at small values of L represents the
conventional rough phase of the RSOS model. Its flat
phase at large values of L represents the DOF phase. In
the DOF phase, the surface contains a disordered array
of steps, but remains flat on average because the height
fluctuations are limited by the BCSOS order in the back-
bone.

For K»0, the Ising spins are ferromagnetically or-
dered. The BCSOS lattice has fallen apart into many
finite lattices. Therefore the arrows are disordered for
all finite L. The infinite cluster of ferromagnetically or-
dered Ising spins, where sites have the same height, has
taken over the role of backbone. Hence the surface is
flat. This represents the conventional RSOS flat phase.

Conventional-type renormalization arguments' can be
applied to (1) and predict that the roughening transition
lines R-L-M-B belong to the KT universality class.

The K &0 part of Fig. 2 describes the coupling be-
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tween ordering of Ising-type surface degrees of freedom
and surface roughening. We expect that everywhere
about S-M-I the BCSOS lattice remains a single con-
nected cluster. Notice that a loop of ferromagnetic Ising
bonds does not break the BCSOS lattice. At the transi-
tion line S-M-I these loops become infinitely large, but
do not yet coalesce into objects dense enough to break up
the BCSOS lattice. Hence this transition belongs to the
Ising universality class. In the rough phase, along S-M,
the Ising-type fluctuations induce a singularity in Kg.

In the limit L ~, each BCSOS model becomes to-
tally ordered. The arrows in each cluster can be ar-
ranged in two ways and therefore (2) reduces to

ZRsos = g e '2 (3)
iclosed loopsf

with N~ the total step length, and N, the number of clus-
ters. About point I (see Fig. 2) (3) reduces to the con-
ventional nn Ising model; 2 ' contributes only a factor of
2 since the Bloch walls form one connected cluster.

At K = 0, the density of ferromagnetic Ising bonds be-
comes sufhcient to break up the Ising-Bloch-wall cluster.
One infinite cluster remains, besides many finite ones, as
long as the ferromagnetic Ising order parameter van-
ishes. The preroughening transition L -P, where this
backbone cluster disintegrates, does not belong to the
Ising universality class. The step interactions establish a
preference for up-down-up-down step order inside clus-
ters of intertwined terraces, but disconnected terraces,
outside the interaction range, lack an up-down bias.
This reveals itself by the factors Za(sos in (2) and 2
in (3), which favor big clusters to break up into many
small ones and significantly influences the critical fluc-
tuations. Equation (3) is similar in appearance to the
graph expansions of the O(n) and q-state Potts model,
but differs from both. Variation of L [see (2)] resembles
variation of n and q in these models. This suggests that
L-P might be a line of continuously varying critical ex-
ponents.

We studied the finite-size-scaling properties of surface
tensions t)

—(a) in semi-infinite strips of widths N up to
10, by calculating the largest eigenvalue of the transfer
matrix of (1) for periodic step boundary conditions
h(N, t) =h(0, t) —a with a =1,2 (which impose a steps
in the surface), and antiperiodic step boundary condi-
tions h (N, t ) = —h (0, t ) +a with a =0, 1 [inversion of
h(r) with respect to integer or half-integer values]. The
r)

—(a) are the differences in free energy (per unit
length) between these and periodic boundary conditions
h(N, t) =h(o, t).

We decompose the r1's as follows: q+ (1 ) =
r) t

+ &, +&,+(I); &+(2) =~,'(2)+~,+(2); q-(0) =q, (1);
q (1)=qt + rlt +q, (0), with + ( —) for even (odd)
values of N. gi is associated with the ferromagnetic
Ising-spin order, and gi with the AF Ising-spin order.
g& is the free energy of one Ising Bloch wall, and is finite
in the RSOS flat phase and zero everywhere else. The
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FIG. 3. Scaling behavior of (a) S (1) and (b) S (0)
across the preroughening transition at L

argument a in rtt (a) for a ) 1 indicates that the bound-
ary condition (+,a) induces a distinct Ising Bloch walls
in the surface. gi is the free energy of a string of fer-
romagnetic Ising spins and is finite in the BCSOS flat
and rough phases and zero everywhere else. The r),

—(a)
are associated with the BCSOS sector. In the RSOS
and BCSOS rough phases, they scale as ' S,+(a)
=Nt),+(a) =K~a /2 and 5, (a) =Nrem, (a) =tr/4. In
the BCSOS and DOF flat phases, they are finite, except
for r), (0) which vanishes. In the RSOS fiat phase,
where all BCSOS lattices are finite, all r),

—(a) vanish.
We found the following symmetry in the RSOS mod-

el: r)+(I) =t) (1) for all values of N along the line
exp(L) =2. Since inside the rough phase S (1)=tr/4
and S+(I) =K~/2, with Kg ( n/2, this implies that the
roughening line L M Bis l-oca-ted at exp(L) (2, and
that the preroughening transition must exist. Moreover,
our numerical results for S+(2) (equal to tr at roughen-
ing) and for 5+(1)—5 (1) (equal to zero at roughen-
ing) strongly indicate that L M Bcoinc-ides-with expL
=2.
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The line R L-is the threshold where rl
—(1) and

rl
+ (2) vanish with universal amplitudes S + (a ) =a rr/4

and S (a) =rr/4. We used this property to locate this
line numerically. Similarly, S-M -I is the threshold
where gt vanishes. At point I, we find numerically a
universal amplitude Si /2rr =0.1245 ~ 0.001, consistent
with an Ising transition.

Figure 3 confirms that the DOF phase has the type of
long-range order described above. In the RSOS flat
phase, every q,—(a) must vanish and qt must be finite.
In the DOF phase gt must vanish, and rl,

—(2) must be
finite. Figure 3 shows their behavior across the pre-
roughening transition at L ~ (point P in Fig. 2). As
predicted, S (1) =Si +S, (0), Fig. 3(a), diverges in

the RSOS flat phase and vanishes in the DOF phase,
while S (0) =S, (1), Fig. 3(b), vanishes in the RSOS
flat phase and diverges in the DOF phase.

At the multicritical point L, on approach from the
rough side, the universal amplitudes must take the limit
values: S+(a) =a rr/4 and S (a) =rr/4. Along L P-
we find numerically a monotonic variation from these
values at L towards the following values at P:
S (1) =0.799+ 0.001, S (0) =0.770~0.002, S+(1)
=0.923~0.003 and S+(2) =3.69~0.01. At point P
we find numerically a thermal critica1 exponent y,
=0.303 ~ 0.001 (a =2 —2/y =4.60+ 0.02). So the
preroughening transition is much weaker than Ising. In
a system with an intermediate DOF phase, the behavior
of the specific heat will be almost identical to that in the
conventional KT theory, with only a second weak singu-
larity near its maximum. It might be useful to reanalyze
previous numerical and experimental specific heat data.

The numerical convergence is slow about L. This is

not surprising since the DOF phase is stabilized by an in-
tricate entropy effect. We cannot rule out that the g's
scale not only at L-P, but also inside a part of the DOF
phase close to L (The infinite Isin. g backbone cluster
might change into a set of fractal-shaped clusters as is
the case along L P.)-

The RSOS model is related to the one-dimensional
spin-1 quantum chain. We can show that the DOF-
type order is related to the so-called Haldane gap, and
that the preroughening transition is analogous to one of
the transitions in that model.

In Fig. 2, the DOF phase appears when the ratio be-
tween the step repulsion L and the step energy K be-
comes larger than L/K =1.23 ~ 0.04. In the unrestricted
SOS model with Gaussian nn and nnn interactions J and
M, the DOF phase should appear at M/1 =0.75 (since
K =1+2M and L = 4M). This estimate ignores the at-
traction between up-down steps (of order 2M) which
favors the AF step order. We expect that the DOF
phase is realized in experimental systems.
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