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Perfect Wave-Number Selection and Drifting Patterns in Ramped Taylor Vortex Flow
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The wave-number band accessible to a homogeneous pattern-forming system collapses to a single wave
number if the control parameters are ramped slowly in space from subcritical to supercritical. This
selection mechanism is investigated for Taylor vortex flow. Quantitative agreement is found with recent
experiments. By variation of both radii independently, any wave number within the stable band can be
selected. In addition, there exist ramps which do not permit any static patterns but force them to drift.
The drift velocity is calculated. Such a drift is not automatically induced by a large-scale flow.

PACS numbers: 47. 10.+g

The problem of pattern selection in pattern-forming
systems far from equilibrium has received quite some in-
terest. In particular, the question whether there is a gen-
eral principle that would single out a unique "preferred
state" or a "preferred wave number" has been quite in-

triguing. This problem has been investigated in various
respects: for homogeneous systems, ' and with the in-
clusion of the effect of boundary conditions, the influ-
ence of defects, and the generation of patterns by a
propagating front. Since the preferred wave number is
expected to be taken on if the structure is allowed to ex-
pand or contract itself freely without being hindered by
boundaries, Kramer et al. replaced one boundary by a
subcritical ramp where the control parameters are slowly
space dependent and become subcritical far from the
homogeneous region. Using a simple one-dimensional
reaction-diffusion model as an example, they showed
that in this case the wave-number band in fact collapses
to a single wave number. Some aspects of this selection
were also analyzed by Pomeau and Zaleski. Subse-
quently, this wave-number selection has been investigat-
ed by various authors, both theoretically ' and experi-
mentally ' ' for convection "' as well as for Taylor
vortex flow.

So far, for no system has a theoretical analysis been
performed which allows a quantitative comparison with
existing experiments. Since the wave-number measure-
ments in Taylor vortex flow have proven to be very pre-
cise this flow lends itself to a detailed test of the ap-
proach by Kramer et al. which relies heavily on a phase-
diffusion equation. ' Since ramps generally induce
large-scale shear flows, the result will in addition test the
phase-diffusion concept in the presence of such flows.
Moreover, the result will show explicitly that in non-
equilibrium systems this selected wave number is non-
universal, i.e., it depends on the way the control parame-
ters are varied. In particular, it is generally different
from that selected by propagating fronts.

Here we derive the phase-diffusion equation appropri-
ate for ramps in axisymmetric Taylor vortex flow and
solve it for the situations of interest. This equation not

only describes the wave-number changes due to the
change in the control parameters but also allows for a
slow drifting of the pattern. A typical setup is shown in

Fig. 1. The ramped part consists of two tapered cyl-
inders with radii R~(z) and R2(z), respectively. In the
experiments the homogeneous supercritical part, where
the inner radius is taken to be R ~, is used to measure the
wavelength. The two control parameters R~ and R2 are
assumed to vary on a slow scale A =ax =az/R&, a«1.
A ditnensionless t is introduced via t =tv/R~. Following
the method described in Ref. 7, the incompressible
Navier-Stokes equations are expanded in a allowing also
the wave number q =q/d to vary slowly in space and
time (d =R

~

—Rq is the local gap width). Details of this
calculation as well as of the numerics used to evaluate
the coe%cients will be presented elsewhere. ' Suffice it
to say that the oblique solution domain is transformed to
a strip with the new coordinate system being locally or-
thogonal to order a. At lowest order in the expansion in

a the equations for the periodic flow with local wave
number q(X) are regained. To solve the equations at or-
der a a solvability condition has to be satisfied which is
obtained by projection of the equations at order a onto
the left zero eigenvector of the linearized operator. '
This gives the phase-diffusion equ- tion,

4 (q )6, p =d„qB(q) + 8„'TC(q) + 8, tlD(q),

where the phase p is given by q =ti p. The flow is 2tr
periodic in p. Instead of the control parameters R~(x)
and Rz(x), the local Taylor number

'r(x) =2n i'd'(rl' —p)/(I —rl') v'

cyi ln«r

inner cylinder

FIG. 1. Schematic setup with ramp on outer cylinder. The

ramp becomes subcritical at the left end.
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and the radius ratio q(x) =R1(x)/R2(x) are used to de-
scribe the tapering of the cylinders. Here p is the ratio
of the outer to the inner rotation rates A2 and Ai, re-
spectively, and v is the kinematic viscosity. The coef-
ficients A, 8, C, and D are functionals of the periodic
flow and therefore depend on q. They are too complicat-
ed to be given here explicitly. In fact, all analytical cal-
culations in this work were done with an algebraic ma-
nipulation program. Before presenting the quantitative
results for the solutions of (1) we discuss some qualita-
tive properties of this equation in the static case, 8,& =0,
which apply also to ramps in other systems.

(1) All ramps which can be transformed into each oth-
er by (nonlinear) coordinate transformations are equiv-
alent, since the coefficients A, B, C, and D are coordinate
independent. In particular, it is not the derivatives ri
=B„Ri and r2 =B„Rq themselves that are important but
only their (local) ratio.

(2) If q is given at one point, e.g. , the critical point
(V' =7 „q=q, ), the phase-diffusion equation fixes q in
the whole system. This leads to the well-known perfect
wave-number selection by subcritical ramps.

(3) In general, the phase-diffusion equation is not a to-
tal differential. Therefore the selected wave number at a
given point depends not only on the values of Y and g at
this point but also on the path in (T, rl) space which
connects this point with the subcritical region. This
nonuniversality of the selected wave number will be dis-
cussed below in detail.

We first present the results for the perfect selection of
the wave number by a subcritical ramp consisting of a
stationary conical outer cylinder and a straight inner ro-
tating cylinder (p =0, see Fig. 1). For a given value
e~ =(7 /V', ) '/ —I of the reduced control parameter in

the homogeneous section, (1) is integrated starting from
a point where ez(x) is very small (ez =0.02) with a
wave number q;„very close to q, (3.1 & q & 3.15). The
precise value of q;„ is essentially irrelevant because with
increasing values of e~ its influence on the wave number
q" obtained in the homogeneous section decreases very
rapidly (see Fig. 3 below). The selected wave number q"
as a function of t.~ is shown in Fig. 2 for the radius ratio
g"=0.75 in the homogeneous section. Also shown are
the experimental results obtained by Dominguez-Lerma,
Cannell, and Ahlers for two different ramping angles 6.
They find small wave-number bands which shrink with
decreasing ramping angle. As the present calculation
applies to the limit 8 0, the agreement is seen to be
very good. Thus the phase-diffusion approach is very
well suited to the description of wave-number selection
by ramps. In order to obtain also the width of the
remaining bands for finite 6' one would have to apply the
theory presented by Riecke' to treat the effect of pin-
ning centers like the abrupt transition from the ramp to
the homogeneous section present in the experiments
(corner). For a model system this theory has been
shown' to describe the essential qualitative features of
the bands exhibited in Fig. 2. Smoothing out the corner
should lead to a significant reduction of the wave-
number band. ' ' Therefore we expect the good agree-
ment to persist then also for larger values of 6. These
steeper ramps induce much stronger shear flows. The
phase-diffusion equation (1) includes the effects of such
ramp-induced shear flows to order a through the terms
involving B„V and B„q.

It has been indicated above that (1) will in general not
be a total differential. This is demonstrated in Fig. 3. It
shows the selected wave number q" as a function of
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FIG. 2. Wave number q" in the homogeneous region select-
ed by ramping the outer cylinder (cf. Fig. 1). Solid curve,
phase-diffusion equation (l); crosses and triangles, limit of the
bands observed in experiments for 8=0.0152 and 6=0.0304
(Ref. 3); dashed curve, Eckhaus stability limit (Ref. 2); dash-
dotted curve, Eckhaus stability limit in amplitude approxima-
tion.

FIG. 3. Different subcritical ramps select different wave
numbers q". ri/rz =(curve 1) —1/ —0.2, (curve 2) —1/0,
(curve 3) —1/1, (curve 4) 0/1, (curve 5) 0.2/1, (curve 6)
0.4/1, and (curve 7) 0.5/1. The bar on curve 5 at eR =0.19 in-

dicates the influence of the initial values of q;„(bar at
e'~ =0.02) on the result of (1). Dashed and dash-dotted curves
as in Fig. 2.
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t. g—similar to Fig. 2—for various diferent linear
ramps,

(c) 1. 0

R, =6(—x)r, 'x+R, , i =1,2, (2) R

. 5
with B(x) the unit step function. Clearly, by a suitable
choice of the ratio r&/rz any wave number within the
stable band can be obtained. For ri/r2=1/0. 82, the
curve for the selected wave number starts horizontally at
the critical point.

What happens if the ramp does not end when the wave
number reaches the Eckhaus boundary q~ where the pat-
tern becomes unstable with respect to localized phase-
slip processes? ' Except for small regions where these
processes occur, the system can still be described by the
phase-diffusion equation, if the phase-slip centers are
considered as sources or sinks of phase. This is because
the space and time scales of these processes are sma11
compared to those of the ramp. For the ramp considered
here it can be seen that after the decay of transients
phase-slip processes occur only at the boundaries. ' Con-
servation of phase requires that for stationary solutions
the local oscillation frequency co be constant in space
(see also Ref. 10),

X

(b)

(a)

—5 0

POSITION x ON RAMP

0.

tl, y =ru =U(x)q(x) =const. (3)

These solutions correspond to a perpetual drift of the
pattern with velocity U(x). At a phase-slip center one
has q =qE. Thus for stationary solutions of (1), one ob-
tains a boundary-value problem which determines the
drift velocity U(x). This is in contrast to the description
given by Brand' who used symmetry arguments to write
down a phase-diftusion equation for the case of two coni-
cal cylinders with constant gap width, which is not con-
sistent with the phase-diAusion equation derived here.
He claims that a second equation for U was necessary to
obtain a closed system of equations. This is not possible,
as the coefficients in (1) are uniquely determined already
by the geometry and the pattern with local wave number
q. As just discussed, it is not necessary either if the
boundary conditions are taken into account. The con-
nection between stability and drift is illustrated in Fig. 4
for a sample geometry without homogeneous parts.
Here the local wave number q(x) together with the local
reduced control parameter e~(x) is given for a ramp of
fixed length LRi =13. The slopes are taken to be ri
=0.005R& and r2 =0.01Ri. The sequence of figures
corresponds to the same apparatus driven at three dif-
ferent rotation rates. In Fig. 4(a) the left end of the ap-
paratus is subcritical and the wave number q(x) starts
at x„, ez(x„) =0, with q, . For this system length q(x)
does not reach the Eckhaus limit and no phase-slip
center can appear. Therefore the pattern is stationary in
spite of the shear Bow acting on the pattern. With in-
creasing AI, the length of the supercritical region grows.
For some 0 II, the pattern becomes unstable at the right
boundary and leads to the appearance of a phase-slip

FIG. 4. Dependence of the wave number on the position on
the ramp for ri =0.005Ri and r2 =0.01R| (curve 7 in Fig. 3)
for three different rotation rates and t)" =0.75 (see also text).
Solid curve, q(x); dotted curve, ez(x). (a) eR =0.19. Ramp
becomes subcritical at x = —1.2. Static pattern with perfectly
selected wave number q" =3.9. (b) eR =0.42. Ramp stays su-
percritical. No static pattern exists: q(x) would become
singular (at x = —2.2 and x = —0.4). Pattern drifts with
co =0.122. (c) e~ =0.68. Ramp stays supercritical. Static
pattern exists within a wave-number band 3.8 (q"(4.7.

center, and the drift sets in. Beyond Qi& the whole sys-
tem is supercritical and we have the situation shown in
Fig. 4(b). A static solution for this case is shown as the
dotted line. This solution does not exist in the whole sys-
tem: The wave number q (x ) becomes singular,
(q —q~) cLx~ —x, since the phase-diffusion constant
B/A vanishes at qE With ru =0.12.2, q(x) is given by
the solid line. For still larger values of Oi, the Eckhaus
band becomes wider and less drift is required to satisfy
the boundary condition on q. Eventually above 0 i„even
static solutions stay within the band as shown in Fig.
4(c). Detailed calculations of the drift velocity in depen-
dence of the rotation rate will be presented elsewhere. '

Drifting patterns like these which come to a halt for
large rotation rates have been observed by Wimmer us-
ing two conical cylinders with constant gap width corre-
sponding to rl =r2. '

Drifting patterns can also be obtained if two ramps
which select difI'erent wave numbers are attached to the
ends of a homogeneous section. ' ' This will be dis-
cussed in detail separately. ' In the Taylor system, drift-
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ing by incompatible ramps can even be achieved by
monotonic linear ramps which become subcritical at two
distinct points (e.g. , for r ~/rq =1/0.4).

It has been shown for the first time that the phase-
diAusion theory for systems with space-dependent con-
trol parameters describes the experiments on wave-
number selection by subcritical ramps quantitatively,
even in the presence of a large-scale shear flow. No ad-
ditional equation is required to describe the influence of
this flow: The phase diffusion equation —together with
appropriate boundary conditions —is self-contained. In
the case of drifting patterns qualitative agreement is
found with the experiments performed so far. For a
quantitative comparison additional experiments are re-
quired, which are being prepared.
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