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Spontaneous Emission of Radiation in the Presence of a Phase-Conjugate Mirror
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The spontaneous radiation of a classical oscillator and that of a two-level atom both in the vicinity of a
phase-conjugate mirror are calculated and compared. In either case the phase-conjugate mirror may be
replaced by a phase-conjugate "image" of the source. We study the dependence of the decay constants
and the characteristic frequencies on the phase-conjugate reflectivity and the difference between the
characteristic frequency of the radiator and the pump frequency of the phase-conjugate mirror.

PACS numbers: 42.65.Hw, 32.70.—n, 32.80.—t

The properties of the electromagnetic radiation that is
emitted by an excited antenna or atom are known to be
influenced by the presence of objects located within a
distance of a few wavelengths of the emitter, as in the
cooperative decay of atoms, ' or of a single atom which
is located near a mirror. The latter problem was
treated by Lyuboshitz in terms of the coupling
through an electric dipole interaction between the radiat-
ing atom and an identical image. As shown by
Morawitz, the six vibrational modes of the classical di-
pole in the presence of a mirror (the symmetric and an-
tisymmetric modes which are polarized in the direction
normal to the mirror and the two orthogonal directions
parallel to the mirror) each have a precise correspon-
dence to the symmetric and antisymmetric collective
eigenstates of the Hamiltonian of two identical atoms.
Because of the broken rotational symmetry of the single
atom, the parallel antisymmetric and orthogonal sym-
metric modes exhibit individual decay rates and level
shifts, which are functions of the distance of atom from
the mirror.

There are several good reasons for taking an interest
in the radiative decay of an atom that is located near a
phase-conjugate mirror (PCM): (a) Since the PCM rev-
erses the direction of radiation emitted by the radiating
atom, the possibility arises of intensified interaction be-
tween the atom and the PCM; (b) the phase of the re-
turned wave at the location of the radiating atom is near-
ly independent of the distance of the atom from the
PCM, up to the distance traveled by the radiation during
a large fraction of the radiative decay time, so that the
interaction with the PCM remains strong over much
greater distance; (c) under operation with sufficient
power in the pump beams of the nonlinear PCM (which
will be assumed to be based on four-wave mixing in this
paper), a conjugation gain in excess of unity becomes
possible, providing yet another mechanism by which to
enhance the magnitude of the interaction; and (d) the
radiating atom interacts, as discussed below, with its own
phase-conjugate image, which is time reversed at one
frequency.

The diAerence cok. —cop constitutes a frequency shift be-
tween conjugate and incident radiation, which was not
included in previous treatments' "of a radiating dipole
in the presence of a PCM. My inclusion of it has led to
the bulk of the new results.

Classical linear dipole radiator. —I consider a classi-
cal dipole oscillator placed at a distance D from a PCM.
The dipole is described by the conventional damped iso-
tropic oscillator equation:

ji+ coop+ ct„,li =E, (t) +E, (t), (2)

where p(t) is the dipole-moment vector, coo is the natural
angular oscillation frequency, a„, is a decay constant
describing nonradiative decay, E, (t) is the self-field, '

accounting for the radiative decay, and E, (t) is the field
returned by the PCM to the dipole's location. The self-
field is the reaction of the radiated field upon the oscillat-
ing charges. The time-varying quantities in Eq. (2) are
defined to be the complex positive-frequency parts of the
physical (real) variables.

The PCM is assumed to shift each frequency com-
ponent of incident radiation according to Eq. (1). This
efI'ect is nonnegligible, even for a resonantly interacting
dipole-PCM system, where coo =cu, because of the
nonzero bandwidth. The conjugate field is then obtained
as

E, (t) =rE,*(t —r) exp[ —i co (2t —r) l,

where r is the amplitude reflectivity of the PCM,
r =2D/C equals the round-trip delay time in terms of the
distance D from the PCM plane, and the asterisk denotes
complex conjugate. The presence of spatial distortion

My model for the PCM is based on the four-wave
mixing process, according to which the PCM may
create two photons of wave vectors k and k' at the loss of
two pump photons of wave vectors ~ k . The condition
of energy conservation then yields a relation between the
angular frequencies

~k+~k =2~m.
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may affect the accuracy of Eq. (3). Such effects can
nevertheless be absorbed into the constant r, provided
that two conditions be satisfied. The first is that the ra-
diation be time harmonic, and the second is that I does
not depend too strongly on the direction of propagation.
The latter requires

(2D f)/C) (secO —1)« 1,

where 0 is the maximum frequency shift and 0 repre-
sents the largest angle at which a ray may be conjugated
by the PCM. Then the spatial distortion which arises
from the presence of fields which are not conjugated,
such as that due to finite-size efI ects of the PC M, and

the evanescent fields discussed in Ref. 10, do not afTect
the time dependence in Eq. (3), although r becomes spa-
tially dependent. Since our interest is in quasiharmonic
fields, these two conditions can be satisfied to sufhcient
accuracy. Another situation to which Eq. (3) applies is

the case of a radiator inside a spherical PCM cavity.
The final assumption determines the self-field"

E, (t) = —a„p(t) (s)

in terms of the radiative decay rate a, .
From combination of Eqs. (2), (3), and (5), the differ-

ential equation for the dipole is obtained without the in-
clusion of the term for the exciting source:

p(t) + (a„+a„,)p(t) + rotc(t) = —ra„p*(t —r)exp[ —iro (2t —r)].
This equation may be solved by our assuming a solution of the form

p(t) =[Aexp( —ivt)+B*exp(iv*t)]exp( —iro t),

(1 —a„~ r
~

e '"/4roo) v +i(a„+a„,)v+ —,
' a,

~
r

~
e '"—6 —

4 a =0.
The two solutions of Eq. (8) are given by

(8)

! we find two solutions for hco and just one for I . Above
this critical reflectivity, the real part Ace vanishes, and
two solutions for the rate constant appear. Thus, at
suKciently high pump power, the radiation frequency
locks to the pump frequency even when 6&0. This was
not predicted in the earlier work. ' " Above a second

v~ = —
—,
' (a„+a„,)i + (6 ——,

' a„~ r
~

e ) ' . (9)

I now restrict the discussion to the case v~ i 0.
When )r ( & ~rr ~ ~, where

(
r

)
'=46'/a' (10)

where v=6, co —
I, I . Assuming that 6=coo —m «co, and eliminating two solutions that correspond to v= ~ co, we

obtain a characteristic equation
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FIG. 1. Frequency Aced and decay constants I + and I — as
functions of mirror reflectivity

~
r

~
for the classical linear di-

pole interacting resonantly (coo/ro = 1) with the PCM. a„,=0,
a, =0.Oleo

FIG. 2. Side-band frequencies Ace —= —hen+ and decay
constants 1+ and 1 — as functions of mirror reflectivity

~
r

~

for the classical linear dipole interacting off resonance
(coo/ro =1.01) with the PCM. a, =0.01ro, a„„=0.
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critical value,

I rc2 I

' = [(a,+ an, )/a, ] '+
I
rc i I

',

the PCM transfers more energy to the radiator than this
radiates, resulting in exponential growth. Note that
Irc2! =I in the case a„,=6=0, as one would expect.
Near-unit values of r~2 are possible only when the non-
radiative loss is small and 6 ( a, .

Evaluation of B+-/2 ~ showed that this ratio is near
unity when h, cu =0, but exceeds 1 for h, m &0 and is less
than 1 when hco )0.

These results are illustrated in Figs. 1 and 2. Figure 1

shows the case 6=0. The onset of instability at
I
r

I cq is
noted in this figure. In Fig. 2, in which 6=0.01', both
critical points are indicated.

Note that the solutions are functions of
I
r

I only and

do not depend upon the phase of r. This result should be
reasonable on grounds that the Poynting vector of the
phase-conjugate field, which, when integrated over the
surface of a sphere surrounding the radiator, yields the
total energy radiated back to the dipole, is proportional
to

I
r

I
. Moreover, a contrary result, as obtained in

Refs. 10 and 11, would imply that energy could be
transmitted from the PCM to the oscillator merely by a
change in the phase of the pump waves. This is in con-
tradiction to the fact that the change in phase of a wave
is accomplished without expenditure of energy.

Two-level system. —Let us consider briefly a two-level
atom radiating near a PCM. Let the atom be located at
the origin of the coordinates, interacting with the PCM
via the quantized radiation field. The interaction Hamil-

!
tonian consists of the usual dipole term HI2= —p. E of
the atom-field interaction, plus the field-PCM interaction

HI2 2 gg gl, r (kcr, k'cr ')a~ al exp( —2ico t ) + H.c.,

where k +k ky+k)', =0, and aI, is the creation operator of a photon of wave vector k and polarization o.. The
coefficients r( . . ) are f.unctions of the PCM. The state of the system is described by a set of complex amplitudes, Ci
for the upper level of the radiating atom and C2(k, cr) for the lower level plus the emitted photon. In the spirit of a
semiclassical approximation, Eq. (I) is assumed to apply, so that the double sum in Ht2 becomes a single sum. In a
continuance of reasoning along classical lines, the two photons in the incident mode are ignored after interaction with
the PCM. The following equations are then obtained:

i 6 dCi/dt =g& pigk exp[ —i(cok —coo)t]Cq(k, cr)+g& pigt, exp[ —i (cok coo)t]R|, C (k2, o),

i 6 dC2(k, cT)/dt =p|2fg exp[i(cot, coo)t]Ci+ p izft Rg [exp[i (co& —coo)t]C|],

(12a)

(12b)

where p i2 is the matrix element of p, and ft, =(scot, /2epV) '

The second sum on the right-hand side of Eq. (12a) represents the action of the PCM. Equation (12a) was obtained
by splitting oA (from the first term on the right) those states directed away from the PCM. Each Cz(k, cr) in this group
is related to C (k2', r')cof the corresponding incident photon according to

1 Jh

C~(k', cr') =
r& „i exp[ —i(2co —

cot,
—

cok )t]Cp(kcT) dt —=Rt, C2(ka).l6
Likewise, in Eq. (12b), a second term from Htq is obtained in the form

rk exp[ —i (2co —
cok —

co& )t]Cq(k'cr') =rt, C2(k', ct')

1

I. A
rt pigk exp[i(cot, —

coo)t]Comdt

=p izfkRt, Iexp[t(cot, —coo)t]C|].

On inspection of Eqs. (12), we note that as far as the
interaction with the PCM is concerned, a similarity to
Eq. (6) exists. In both systems, terms are present which
describe the interaction of the radiator with a reciprocal-
ly related transformed radiating "image" system, by the
intervention of a PCM-reflectivity operator. In the clas-
sical case, the image of the radiating isotropic dipole is
conjugated according to the same rule as the classical ra-
diation field. On the other hand, the image wave func-
tions of Eqs. (12) are not time reversed.

Equations (12) are dift'erent to solve, except in the de-
generate case, coo=co . Then we can try the Ansatz

C (t) =C (0)e ' "'e

!
In the general case, more than one or even two frequen-
cies and decay constants are needed in the solution. In
view of the nonlinearity of the two-level system, this is
not surprising. One would expect a large number of such
harmonics to arise when (a) the bandwidth of the PCM
is more than a few multiples of 8; (b) the combined radi-
ative and nonradiative lifetime of the transition equals at
least a number of photon round trips from atom to PCM;
and (c) C(0) —= 1, or the PCM reilectivity exceeds unity.

Thus, in the resonant case, we obtain

I =I p12 lfk I
(I

I Rk

(cok co Aco) + I
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and

P121fk I
(I

I +k. I
')(rok —

rom —&co)
dco =

(cok —co —neo) '+ I '

and for hco, from Eq. (15),

Leo=0, for all Ir I. (19)

All results appear to agree well with physical con-
siderations.

for the damping constant and the frequency shift, respec-
tively. I have made use of the conjugation symmetry re-
lation of the reAectivity:

RI, ~
= —Rk*~, (16)

and since the linewidth of the atomic transition is as-
sumed to be small, I approximated

=fk (17)

Equations (14) and (15) are easily solved in the situation
where the refectivity Rk can be taken to be the same
constant (r) for all modes (corresponding to a phase-
conjugate cavity geometry). The solution for I from Eq.
(14) is

I,(1 —IrI'), for IrI & I,
0, fo r Ir I

~ I,
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