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Unitary Symmetry and the Stability of X Hypernuclei

Carl B. Dover
Brookhaven National Laboratory, Upton, New York 11973

and

Herman Feshbach
Massachusetts Institute of TechnologyCa, mbridge, Massachusetts 02I 39

(Received 10 July 1987)

In the limit of unbroken SU(3) symmetry, we exhibit a selection rule which forbids the decay of cer-
tain hypernuclear states involving a coherent admixture of A and Z hyperons. This may provide an ex-
planation of the narrow widths of some hypernuclear excitations observed in the X, continuum.

PACS numbers: 21.80.+a

In several (K, tr+) experiments' using nuclear tar-
gets, relatively long-lived X,-hypernuclear states were
seen, whose decay width I (5 MeV is less than the typi-
cal values I = 10-20 MeV obtained from optical-model
estimates. Although the existence of such narrow struc-
tures remains controversial, particularly for & C and & 0,
one is invited to speculate on the nature of dynamical
mechanisms which could lead to such a width suppres-
sion. Several possibilities have been considered, namely,

spin selectivity in the XN~ AN conversion process, as
well as Pauli blocking and dispersive/binding efI'ects in

the nuclear medium. Here we explore another possibili-
ty, namely that the observed narrow X, widths point to
the existence of an approximate selection rule based on
broken SU(3) symmetry.

The basic idea is the following: We assume that the
hypernuclear state in question is an eigenfunction of the

!
quadratic Casimir operator C of SU(3), namely

8

C= g Cj, Cj = g F,(i)F,(j) =T; Tj+U, Uj+V; V, —
3 (T;3Tj3+U'3Uj3+V'3vj 3),

a=]

where the SU(3) generators F, and the T , U-, and-
V-spin operators are defined as in Gasiorowicz. Fur-
ther, we hypothesize that the transition operator t&2 for
baryon-baryon scattering and reactions is of the form

t [2 =a+ bC|2 (2)

(tlt(tc) i g t;, i y(tc') & =O. (3)

Thus, in the limit of unbroken SU(3) symmetry, one ob-
tains a selection rule which forbids transitions between
eigenstates tlr(tc) of the hypernucleus. Note that y(tc)
involves a coherent mixture of Z and A, coupled to a nu-
clear core, unlike the weak-coupling limit, where eigen-
states consist of pure Z or A configurations. In this pa-
per we assume that such a selection rule remains approx-
imately valid in the realistic case where SU(3) symmetry

where, for the moment, a and b are spin- and flavor-
independent amplitudes. A quantitative treatment of the
two-body problem requires the introduction of a term
cG in Eq. (2) proportional to the third-order Casimir
operator G, but we omit this here to simplify the dis-
cussion. In the two-body case, the XN AN conversion
process is mediated by the C&2 terms, while the a term
enters only for elastic scattering. %'e now observe that
for states of diA'ering C]2 eigenvalues K&r',

is broken via explicit hypercharge dependence of [a,b, c].
The manifestations of SU(3) symmetry breaking include
the sizable mass splittings of strange and nonstrange
mesons and baryons, and the existence of an np, but not
a hyperon-nucleon, bound state. We anticipate an analo-

gy with the case of isospin T in nuclear physics. There,
even in the presence of a strong Coulomb potential
[analogous to a mass diA'erence in SU(3)], T is essential-

ly a good quantum number because of the action of the
T;.Tj symmetry potential [analogous to C&z in SU(3)].
Symmetry breaking occurs largely in the diagonal ele-
ments of the mass matrix; the analogy in SU(3) is pro-
vided by the Ge11-Mann-Okubo mass formula.

We find that the form (2), if a term cG is included,
is su%ciently flexible to reproduce the observed low-

energy cross sections in the hypercharge Y&+ F2=1
sector, namely those for X, +p Z+p, Ap Ap, and

p X p, Z n, An. These are spin-averaged quanti-
ties, and reveal little about the spin dependence of
{a,b, c]. In a one-gluon-plus-quark-exchange approxi-
mation, appropriate only for the very short-range part of
the baryon-baryon interaction, we obtain the form of Eq.
(2), with c=0 and a mild spin dependence for a. This
approximation does not account for the data. Realistic
one-boson-exchange potentials, on the other hand, dis-
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y(1, —, , 0) = [ZN] T=3/3,

tel(1, —',0) = ——' 42[Apl+ —,
' J2[zN]r=t/2,

y(1, —,', ——', ) = —,
' J2[Ap]+ —, J2[XN]

y(0, —, , I ) = {ZNjr=3/q,

y(0, —,', 1) =,'0 J10{Apj+ 10 J10{ZNjy.=t/2,

y(0, —,', ——', ) = 1'0 J10{Apj —
1'0 410{XNjr =i/p,

(5)

play a strong spin-isospin dependence for ZN X,N,
AN. For ZN AN, for instance, the spin-triplet ampli-
tudes dominate. We defer the discussion of spin depen-
dence to a later article.

Denoting by {BiB2j and [BtBq] the symmetric (S)
'So and antisymmetric (A ) S i baryon-baryon cou-
plings, respectively, we find

C„({ppj,{pnj, [pn], {&'pj,[x'p])
= [{ppj,{pnj,o, {r'pj, o],

whereas for Yi+V2=1, charge 1, we find the SU(3)
eigenfunctions tt(~S, T, tc) of spin S, isospin T, and Ci2 to
be

[pn] i
= (p t n 1

—n tp t )/W2.

The eigenfunctions y (S,T, tr) for the three-body case
are given by

8

tel"'(S, T, K) = g ak(S, T, t~)yk,
k=]

(6)

where S= —,
' g =t o;, T= —,

' g, =, r;, and i~=(g, (, C;, ).
The coefficients a k( ST, tc) are tabulated in Table I.

Now consider the (K,n) reaction on a nuclear target
at momentum transfer q =0. In this case, the baryon
part of the operator for the nuclear transition is g, U;
for the (K, rr ) reaction, g, V; for (K, rr ), and

g; V; T; for (K, rr ). Here, (U;, V;, T; ) are the
usual U-spin, V-spin, and isospin lowering operators.
Since

where the superscripts label the ordering where the A ap-
pears as particle 2 and the arrows indicate the z com-
ponent of spin]. Here,

{pnj =(ptnt —pint+" tpt ntpt)/2,

[pn]o = (p tn 1+pint —n tp 1

—n tp 1 )/2,

and

where the T = 2, 2 combinations are given by
(-') '"Z' —(-') '"Z' and (-') '"Z'n+(-') '"Z'
respectively. ' The y's can be constructed simply with
the SU(3) Clebsch-CJordan coefficients derived by de
Swart. Note that {Apj is the dominant component in

y(0, —,', 1), and {XNj is dominant in y(0, —..', ——', ),
whereas [Ap] and [ZN] are equally weighted in S =1,
T = —,

' configurations.
In a straightforward manner, one may extend the

analysis to the three-body YNN system. For S3
T3 =0 (charge +1), we must consider linear combina-
tions of the eight basis states yk =At {pnj, At [pn]o,
Atlpnlt ~t{pnj* ~t[pn]o, Zi[pn]t Zt {ppj, and Zt {nnj
[in fact, symmetrized combinations

(A'{pnj —{pnj ""A"'+{pnjA )/J3

gU, —,g c,, = gv, , g c„=o,
l l (J

(7)

the corresponding (K,z ) or (K, tr") processes do
not change the eigenvalue tc=(g, (,C;, ) of the target.
Note that for q~0, the transition operators U;, etc. , are
weighted with relative phases exp(iq r;), and K is no
longer exactly conserved. However, for small q, we ex-
pect hypernuclear production to be dominated by
SU(3)-conserving transitions. From Eq. (4), we see that

C~ is proportional to the number of T= 1 pairs in

the target nucleus. As an example, He and H have
K = —,', so the reaction H(K, x ) i.H would produce
only the components y( )(S,T, tr) of Eq. (6) with S = —,

'

(spin-non-flip) and tc= —,
' . For the (K,z+) reaction,

on the other hand, there is no selection rule which con-

TABLE I. Coefficients ak(S, T, x.) for YNN eigenstates y (S,T, K).

3
2

I

2

I

2

3
2

1

2

(Sai, T, x), k =1-8

0, —, ,
—I/J2, 1/243i 0, 0, —1/243, —1/243

0, 1/243, —I/J6, —=', 0, 0, —,', —,
'

J3/2 J2, 0, 0, 0, 1/2 42, —
—,', 1/2 42 —1/242

1/J2, 0, 0, 0, —I/J6, I/J3, 0, 0

1/242, 0, 0, 0, I/246, —1/243, —J3/242, J3/2 42

0, 0, 0, J2/J3, 0, 0, 1/ J6, I/W6

0, J2/J3, I/J3, 0, 0, 0, 0, 0

0, 0, 0, 0, J2/ J3, 1/J3, 0, 0
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serves tc, as for (K, tr ) or (K, tr ). However, for the
case of two valence protons, g,. V; T; generates lZ pj,
while for the neutron-proton system, C&2 is conserved.

Under these circumstances, the finite width of the Z

hypernuclear states is a consequence of symmetry break-
ing. It can be anticipated that this width will be smaller
than that calculated from the experimentally observed

p transition cross section, since a substantial part
of that cross section will be generated by symmetry-
conserving interactions given by Eq. (2). In principle,
one should be able to determine the strength and nature
of the symmetry breaking by demanding a simultaneous
fit to NN and V% cross sections. The detailed analysis,
and its impact on the width of a many-body system, will

be presented elsewhere. Note that a substantial portion

of the symmetry breaking may be accommodated by hy-
percharge dependence of the parameter a, and this does
not contribute to the decay widths. Of course, more VN
data would be extremely helpful. The symmetry break-
ing that one can deduce from the two-body data must, in
the long run, be consistent with what one knows about
the symmetry breaking in the baryon-baryon interaction,
such as that induced by the diff'ering masses of the
baryons and bosons, the exchange of the latter giving rise
to the interaction. We leave the issue of the origin of
symmetry breaking for later consideration.

Let us now consider the introduction of symmetry
breaking through the parameter b. If different values b
and b are taken for hypercharge Y=2 (NN) and Y= I

(Y1V), respectively, then the effective transition operator
for the many-body system is of the form

tIe '=((b) —3&b/2) g, & C0e '+Aha, & (Y;+ YI)C) e'

where (b) =(b +b )/2, Ab =b' —b, and k is the
momentum transfer imparted to the nucleon at ri in the
ZN AN process. Note that k=0 in the SU(3) limit,
but

~
k i

= 280 MeV/c when free-space masses are used
for the A and Z.

In the weak-coupling limit, the eigenstates of the sys-
tem consist of pure A+core and 2+core configurations
(with, of course, various Y single-particle states and
excited-core states admixed). The width of 2 states in
this case has been considered by Auerbach. ' ' For
g, &, Ci eigenstates, the decay matrix element obtained
from Eq (8) will be quite different than for the weak-
coupling limit. This approach, which corresponds to a
strong-coupling limit, is appropriate for the description
of the short-range properties of the VN system, whereas
the weak-coupling picture'' applies to the long-range YN
interaction mediated by one-pion exchange. Quantita-
tive calculations are required before we can claim that
coherent X-A admixtures (i.e., the tendency of the sys-
tem to form g, & C,i eigenstates) exert a strong in-
fluence on Z-hypernuclear decay widths. These calcula-
tions are in progress. Here, we have focused on the pos-
sibility of width suppression for two-body and three-body
systems of strangeness —1, but our arguments also apply
to such clusters circulating around an inert nuclear core,
since the surface localization of the hyperon wave func-
tion can lead to a suppression of Z A conversion on the
core.

For the strangeness —2 two-body case, the SU(3)-
flavor-singlet state with S =0, T=O, K = —3, which is a
linear combination of AA, :-N, and ZX components, cor-
responds to the H dibaryon proposed by Jaff'e. ' Note
that the production of the H via the reaction K
+ (ppf K++H involves the change of Ci2 by four
units and may be suppressed. One can also construct
strangeness —2 three-body eigenstates of g, & C;I.
There is the intriguing possibility that one or more of

these may exist as bound states stable with respect to de-
cay into AAN. Similar possibilities exist for the four-
body system.

The energetics of hypernuclear ground states suggest a
weak-coupling limit in which the mass lies close to
m~+ (A —I )miv. If small 2 admixtures are present,
they could show up as modifications of magnetic mo-
ments or weak-decay branching ratios. Our emphasis is
on excited states, where X, -A mixing would be revealed in

decay widths. The approach taken here is distinct from
the discussion' of strangeness analog resonances based
on the Sakata model, where one considers coherent ad-
mixtures of particle-hole configurations, but neglects Z-
A mixing. In Ref. 2, it is shown how the conversion
width of a X can be suppressed for some states because
of the spin dependence of the ZÃ AX amplitude.
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DE-AC02-76CH00016 with the U.S. Department of En-
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