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Manifestation of Berry’s Topological Phase in Neutron Spin Rotation
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Recently, Berry recognized that topological phase factors may arise when a quantum mechanical sys-
tem is adiabatically transported around a closed circuit. We have measured Berry’s topological phases
by polarized-neutron spin rotation in a helical magnetic field. Berry’s law is thus verified for fermions.

PACS numbers: 03.65.Bz, 14.20.Dh

Topological phases in simple quantum systems have
been found to be of some interest recently. This interest
was stimulated by a paper of Berry,' who derived a sim-
ple law governing these phases. Topological phases may
show up whenever the system under study depends on
some multiple parameter and is transported adiabatically
around a closed curve in parameter space. These new
phases do not depend on the interior dynamics of the sys-
tem, but instead depend on its geometric history.

Topological phases are important in the context of
non-Abelian gauge theories and of fractional quantiza-
tion, and therefore Berry’s findings have been found to
be of interest in a number of recent investigations cover-
ing a variety of subjects.>”® These phases may mimic
the effect of a magnetic monopole of unit Dirac charge
located at the origin of parameter space. The
Aharonov-Bohm effect turns out to be a special case of
the topological-phase concept. A further generalization
of Berry’s concept has very recently been presented by
Aharonov and Anandan.’

Berry’s law takes its simplest form when the required
multiple parameter is an external magnetic field B.
When B is varied adiabatically such that the tip of the
vector B describes a closed loop C [see Fig. 1(a)l, then
the system should, at the end of this excursion, return to
its original state, according to the adiabatic theorem of
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quantum mechanics. It simply will have picked up a
phase factor exp(ime) for each spin substate |m), where
¢ is the usual dynamical phase

.
¢=xf0 B(t)dr, )

FIG. 1. (a) Adiabatic transport of the magnetic field vector
B around a closed loop C. Berry’s phase is determined by the
size of the solid angle Q; see Eq. (2). (b) Arrangement of the
helical coil for the right-handed B, field. The neutron beam is
along z. The solenoid for the axial B, field is not shown.
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with the gyromagnetic ratio k. But, according to Berry,
a further phase factor exp(imy) will show up, with a to-
pological phase of size'°

y=-Q, )

where Q is the solid angle subtended by the closed curve
C as seen from the origin B=0, at which point the sys-
tem is degenerate as required in Berry’s theory. The
overall phase factor then is exp(im®,), with the rotal
phase

D, =¢+y. 3)

At first sight the experimental observation of these extra
phases seems to be difficult. The adiabatic condition re-
quires that the change in the dynamic phase ¢ be much
larger than the topological phase shift y induced by the
adiabatic excursion of the system’s parameters:

Lyl <ol

Therefore, the separation of y from the measured total
phase @, requires very precise experimental control of
the system.

Berry! proposed a measurement of y on a particle in-
terferometer. Moody, Shapere, and Wilczek® proposed
looking for tiny frequency shifts in nuclear magnetic res-
onance (NMR) signals. Both would seem to be difficult
experiments (but see Note added).

We have observed Berry’s phase in an experiment on
neutron spin rotation in a twisted magnetic field. We be-
lieve this to be the most straightforward realization of a
topological-phase experiment with fermions. In the
meantime, measurements of Berry’s phase for bosons'!
(polarized photons in a twisted optical fiber; see also Ki-
tano, Yabuzaki, and Ogawa,'? and Berry'®) and for sys-
tems with orbital angular momenta'4 (“pseudorotation”
of atomic clusters) have also been reported.

Will a neutron spin-rotation experiment give the same
information on Berry’s phase y as a neutron inter-
ferometry experiment? In neutron interferometry'® a
phase shift ®,, applied to only one part of the “split”
wave function, is directly read from the interference pat-
tern

T l+cost,.

When the phase shift on the neutron is induced by a
magnetic interaction, then in a spin-rotation experiment
with polarized neutrons the phase of the neutron spin can
be read from the neutron-polarization signal after the
neutron-spin analyzer, which necessarily has the form

P=a,+a,;sin®, +a;cosd,,

with coefficients a,a,,a3 depending on the special choice
of the configuration.

Thus, when under a magnetic interaction the dynami-
cal phase ¢ is shifted by a topological phase v, this can
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be seen in neutron spin rotation as well as in neutron in-
terferometry. The fact that the phase shift seen in the
neutron-interferometry signal is only half that seen in an
ordinary spin-rotation experiment is due to the spinor
character of the neutron wave function and leads to the
spectacular sign change of the wave function upon a
360° rotation of the spin-+ system. This spinor rotation
at ““half speed” has been observed in several beautiful in-
terferometry experiments'®-'® and can be taken for
granted here. The question of the spinor character of
the neutron wave function, which is determined by the
structure of the term <o in the operator R(d,)
=exp(+ic-®,), is decoupled from the question of the
appearance of an additional topological phase hidden in
D,.

In our experiment we used a slow, monochromatic
beam of polarized neutrons (velocity ¢ =500 ms ~', po-
larization P=97%) from a neutron guide of the Institut
Laue-Langevin’s high-flux reactor. The neutron beam
enters and leaves the field-free region of a Mumetal
cylinder, which is coaxial with the beam (diameter 30
cm, length 80 cm). The direction of the polarization
vector of the neutrons entering the cylinder can be
chosen arbitrarily, as can be the component of polariza-
tion analyzed afterwards, and there is no loss of polariza-
tion during passage through the cylinder (for more de-
tails see Dubbers and co-workers'*20),

Within the Mumetal cylinder the neutrons nonadia-
batically enter and leave a static helical magnetic field,
which is perpendicular to the beam, and which makes
one complete right turn about the beam axis. The coil
which produces the field is wound along the surface and
across the openings of a hollow cylinder, 40 cm long and
8 cm in diameter, as shown in Fig. 1(b). Thus the neu-
trons on their flight along the axis of the cylinder see a
right circularly polarized magnetic field B, rotating by
2r over a length L =40 cm.

A second coil of the same type, wound onto the first,
but twisted in the opposite direction, can be used to pro-
duce an elliptically polarized rotating field, in order to
show that Eq. (2) is independent of the specific form of
the contour C, as long as Q is kept fixed.

The opening angle of the contour Cis Q@ = £ 27 when
only B, is applied. Other values of Q can be chosen by
superimposing an axial magnetic field B, produced by a
long solenoid coaxial with the neutron beam.

If P,(0) is the polarization component of the neutrons
entering the magnetic field region at time 7 =0, and
Pp(T) (a,B=x,y,z; see Fig. 1) the polarization com-
ponent analyzed after the neutrons leave the field region
at time r =T =L/v==0.8 ms, then

P(T) =Gsa(T)P,(0).

Gpo(T) can be calculated exactly for circularly polarized
fields by going to a reference frame which rotates in
phase with B, at frequency 27/7.
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FIG. 2. (a) Neutron spin-rotation patterns of the transverse
neutron spin component P, (T) =G,,(T)P,(0) in the helical B,
field. Without Berry’s phase the maxima of this curve should
be equidistant. (b) Observed and calculated phase shifts ®;.

We write the number of neutron spin precessions
about the axial, the helical, and the total magnetic fields,
respectively, as

{=«xB,T2n, &=xB\T/2n,
n=(2+¢&2)2=xBT/2x.

Then, using standard methods [e.g., Eq. (55) in the work
of Dubbers?!], we obtain, for instance,

_ 1)+ ¢&2cos2al(g+1)2+£2] 12
(C£1)2+¢? '

The = signs which appear in this formula refer to right-

and left-handed B, fields. In contrast to B, the B, field

as seen by the neutrons is not “switched on” nonadiabat-

ically. Therefore, when B, =0, only G, can be measured

unambiguously. For B, =0 the other coefficients are

GZZ

G,, =cos2n(1+¢&2) 2,
(4)

Gy = sin2z(1+&£2) 12

- s
(1+&1)172

etc. If By is not twisted but uniform, then (£ 1)? is re-
placed by ¢?, and (1+&2) by £2.
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FIG. 3. Berry’s phase y at different solid angles Q of the
twisted B field.

The phase angle in these formulas is
&, =27+ 1)2+&2]2—2n (5)

The extra term — 2x insures that ®, =0 when there is no
field. In the adiabatic limit (> 1, i.e., n?>>n> ¢) this
becomes

@, =270 —2x(1 —¢/n) =2zn—2x(1 —cos6)
—kBT — Q=0+,

as predicted by Berry; see Egs. (1)-(3).

We have measured the neutron spin-rotation patterns
G;; as a function of both B, and B, and G, G,y, G.,
G, as functions of B for B, =0.

Figure 2(a) shows a measurement of G,, for B, =0,
and a fit by Eq. (4). Without Berry’s phase the pattern
in Fig. 2(a) would be a simple cosine. Figure 2(b) shows
the measured phase angles as a function of B [read at
the maxima and minima of Fig. 2(a)l, fitted with
@, =2x[(1+&2)2—1] from Eq. (5). As expected, in
the adiabatic limit (i.e., for large B;) the phase is shifted
by Berry’s phase y=2x.

Figure 3 shows Berry’s phase y as a function of B./Bj,
as obtained from a measurement of G,,(B,) with B,
fixed at (1 +§2)1/2=5. The solid curve gives the corre-
sponding values of @ =2x(1 —B,/B), in order to test
Berry’s law, Eq. (2). The first few points of Fig. 3 fall
slightly below the predicted curve, because the adiabatic
condition is not yet fully met. The scatter of the further
points is due to imprecise reading of the larger values of
@,.

We draw the following conclusion from our investiga-
tion: On the one hand, Berry’s phase law certainly is
part of a far-reaching concept; on the other hand, in its
simplest manifestation, which we believe to have real-
ized, the appearance of a topological phase seems to be
trivial: It can be generated or transformed away by go-
ing to a rotating-reference frame, which is a standard
procedure?? in NMR work, and which also works in the
classical case.?® Furthermore, we are told that extra
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phases due to spin rotation in helical fields are also ob-
served in polarized-neutron scattering in the helical mag-
netic structure of a ferromagnet’s Bloch wall.?* There
(as in the early experiments on twisted optical fibers,
quoted in Ref. 11) the appearance of extra phases was
taken to be self-evident, which indeed it is.

We thank O. Schirpf for useful discussions and help
in the experiment, and T. Billington for the diligent con-
struction of the twisted coils. This work was supported
by the Bundesministerium fiir Forschung und Technolo-
gie, under Contract No. 06 HD 983 I.

Note added.— Upon first submission of this note the
authors received a preprint?® on the measurement of
Berry’s phase in the rotating frame with NMR methods.

IM. V. Berry, Proc. Roy. Soc. London A 392, 45 (1984).

2Hua-zhong Li, Phys. Rev. Lett. 58, 539 (1987), and refer-
ences therein.

3Frank S. Ham, Phys. Rev. Lett. 58, 725 (1987), and refer-
ences therein.

4G. W. Semenoff and P. Sodano, Phys. Rev. Lett. 57, 1195
(1986), and references therein.

SR. Y. Chiao and Y.-S. Wu, Phys. Rev. Lett. 57, 933
(1986), and references therein.

6J. Moody, A. Shapere, and F. Wilczek, Phys. Rev. Lett. 56,
893 (1986), and references therein.

7H. Kuratsuji and S. Iida, Phys. Rev. Lett. 56, 1003 (1986),
and references therein.

8F. D. M. Haldane and Y.-S. Wu, Phys. Rev. Lett. 55, 2887
(1985), and references therein.

9Y. Aharonov and J. Anandan, Phys. Rev. Lett. 58, 1593

254

(1987).

10Berry writes his phase yn, = —mQ, that is y, =my. Our
definition, Eq. (2), helps to distinguish effects due to the spinor
character of the neutron from effects due to Berry’s phase.

TA. Tomita and R. Y. Chiao, Phys. Rev. Lett. 57, 937
(1986).

IZM. Kitano, T. Yabuzaki, and T. Ogawa, Phys. Rev. Lett.
58, 523 (1987).

I3M. V. Berry, Nature (London) 326, 277 (1987).

14G. Delacrétaz, E. R. Grant, R. L. Whetten, L. Wéste, and
J. W. Zwanziger, Phys. Rev. Lett. 56, 2598 (1986).

15Neutron Interferometry, edited by U. Borse and H. Rauch
(Oxford Univ. Press, New York, 1979).

16H. Rauch, A. Zeilinger, G. Badurek, A. Wilfing, W. Baus-
piess, and U. Bonse, Phys. Lett. 54A, 425 (1975).

17S. A. Werner, R. Colella, A. W. Overhauser, and C. F.
Eagen, Phys. Rev. Lett. 35, 1053 (1975).

I8E. Klempt, Phys. Rev. D 13, 3125 (1976).

19T, Bitter and D. Dubbers, Nucl. Instrum. Methods A239,
461 (1985).

20E, Muskat, D. Dubbers, and O. Schirpf, Phys. Rev. Lett.
58, 2047 (1987).

21D, Dubbers, Z. Phys. A 276, 245 (1976).

221, 1. Rabi, N. F. Ramsey, and J. Schwinger, Rev. Mod.
Phys. 26, 167 (1954).

23J. A. Cina, Chem. Phys. Lett. 132, 393 (1986). The result
of this paper can readily be anticipated when one considers
that the so-called classical equation of motion of the magneti-
zation is simply the irreducible representation of the quantum-
mechanical equation of motion of the system’s density opera-
tor; see, for instance, U. Fano, Phys. Rev. 133, B828 (1964).

240. Schiirpf, J. Appl. Crystallogr. 11, 631 (1978).

25D. Suter, G. Chingas, R. A. Harris, and A. Pines, to be
published.



