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Local Quantum Field Theory of Possible Violation of the Pauli Principle
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We generalize to a local relativistic quantum field theory a proposal of Ignatiev and Kuzmin for a sin-
gle oscillator which has small violation of the Pauli principle and thus provide a theoretical framework
which, for the first time, allows quantitative tests of the Pauli principle. Our theory provides a continu-
ous interpolation between fully hindered parafermi statistics of order 2 (P =0), which is equivalent to
Fermi statistics, and ordinary parafermi statistics of order 2 (P= 1). We suggest two types of experi-
ments which can place bounds on P.
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Green ' gave a quantum field theory of particles which
obey neither Fermi nor Bose statistics but rather obey a
discrete set of parafermi or parabose statistics of integer
order p & 1. The case p=1 is Fermi or Bose statistics.
Parafermions and parabosons are easily distinguished ex-
perimentally from fermions and bosons since integers
greater than one are easily distinguished from one. Up
to now there has not been a formalism which allows dis-
cussion of small violations of Fermi or Bose statistics.
Two types of theoretical results have prevented this. At
the level of quantum mechanics, Messiah and Green-
berg proved that there is an absolute selection rule
which forbids transitions between states which contain
any number of bosons and fermions and at most one par-
ticle which is neither a boson nor a fermion and states
which have more than one non-Bose or non-Fermi parti-
cle, even when the number of particles is not conserved.
They also proved that, in general, the symmetry type of a
state of identical particles is absolutely preserved. In-
dependent of Ref. 2, but using the same theorems, Ama-
do and Primakoff specifically criticized attempts to
infer bounds on violations of the Pauli principle for elec-
trons from the absence of K-shell x rays from atoms or
for nucleons from the absence of y rays from nuclei,
since these attempts to deduce bounds on the validity of
the Pauli principle were based on the possibility of tran-
sitions between states obeying the Pauli principle and
states not obeying it, while such transitions are absolute-
ly forbidden since the Hamiltonian for identical particles
must be totally symmetric in their coordinates and thus
the symmetry type of the states is conserved by a super-
selection rule. On the quantum-field-theory level,
Greenberg and Messiah proved selection rules, stated
below, which prohibit transitions between states having
only normal particles and states having only one para-
statistics particle in addition to any number of normal
particles.

Recently, Ignatiev and Kuzmin (IK) have construct-
ed a model of a single oscillator which is mainly Fermi,
but, with small amplitude P, can have double occupancy.
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where upper (lower) signs are for parabose (parafermi)
operators. Green gave a representation of operators
obeying these rules with "Green's Ansatz":

b (a) (2)
a=1

where for equal values of a (the "Green index") the
operators obey the usual commutation or anticommuta-
tion relations, but for different values of the Green index,
the operators have abnormal relative commutation rela-
tions,
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The number p of values over which the Green index runs
is the "order" of the parastatistics. For parabosons of
order p at most p particles can be in an antisymmetric
state; for parafermions of order p at most p particles can
be in a symmetric state (in particular, at most p particles
can be in the same state). For p=l, parabosons (para-
fermions) reduce to bosons (fermions). Greenberg and
Messiah derived the absolute selection rules for para-
particles. Two different types of selection rules can
occur, depending on the interaction terms in the theory.
In one case, the paraparticles of each order p are con-
served mod 2. In the other, the number of paraparticles

As a model of a single oscillator, the IK idea cannot be
used to analyze experimental data. In order to make the
IK idea useful phenomenologically, we generalize it to a
local quantum field theory. We also point out how our
theory evades the arguments against the mixing of
different types of statistics.

We recall Green s parastatistics which uses the trilin-
ear (anti)commutation relations
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plus the Hermitean conjugate relations. Our first obser-
vation is that (Sa)-(Sc) reduce to the Fermi case for

p 0 and to the parafermi, order 2, case for p l.
For P=l, (Sa) and (Sb) reduce to a a +a a'=a,

aa =a, which are the single-oscillator commutation re-
lations for an order-2 parafermi oscillator (see p. B1158
of Ref. 5) with the normalization changed by a factor of
1/J2. For P =0, (Sa) and (Sb) imply [a,a ] =0,
aa a =a. It is trivial that [a,a] =0, so that if a and
a are irreducible, which we assume, then a =cI, where
I is the identity, and then a a =0 implies a =0. These
relations are consistent with those of a Fermi oscillator.

For Fock-type representations, the trilinear commuta-
tion relations of parastatistics are supplemented by a
no-particle and a single-particle condition. The analogs
of these conditions for the IK oscillator are

a
I
0) =0, aa IO) =

I
0). (6)

With use of (6), (Sa) implies (Sb) and (5c) for Fock-
type representations. Simply check that (6) and (5a)
imply Ia I

0) =0 and also (Sb) acting on the no-

particle, one-particle, and two-particle states. It is satis-
fying to see that (5b) is redundant, since commutation
relations usually have terms in which the degree of the
operator product is reduced.

To see the connection to the parafermi theory, use
parafermi operators, b and b, of order 2, since they will

have maximum occupancy two. For a single oscillator,
the only terms which can occur are b and b b . A sim-
ple calculation shows that the IK oscillator can be ex-
pressed with a Green-type Ansatz,

a'= ,' JZ[b'+ —,
'
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b (])+b (2)

N, = -,
' [b', b) + 1 =b""b"'+b''tb"'-

(7)

(8)

of each order is conserved, mod p. There is no case in

which a single paraparticle can decay into normal parti-
cles, nor can a paraparticle mix (i.e. , form a linear super-
position) with a normal particle.

lgnatiev and Kuzmin (IK)" constructed a model of a
single approximately Fermi oscillator defined by

a'
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IK gave the following trilinear commutation relations for
their oscillator:

where b ' obeys the Green component relations (3a)
and (3b). [Since only P appears in (Sa) and (5b), P can
be replaced by —P in (7) and below. ] This representa-
tion makes it clear that a 0, P 0. Then we see that
a is a parafermi operator of order 2 which has been
modified by the factor 1 Np which prevents double oc-
cupancy and then equipped with the term PNO which al-
lows double occupancy proportional to p. Thus Eq.
(7) again shows that for P =1 (P =0), we can recover
a parafermi oscillator of order 2 (an operator which
behaves like a Fermi oscillator). As mentioned above,
the normalization has also been changed by the factor
1/J2. We call this construction a "hindered parafer-
mion" or, for short, a "paron" of order 2. We call an
electron which obeys the statistics a "paronic electron. "

IK give the expression
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and the corresponding formula for a . Collect all terms
with the coe%cient rcmp. This gives equations which
have terms like [ak al] a + cyclic permutations. The
terms in these equations create or annihilate diAerent net
amounts of momentum; thus these equations can be
separated into three equivalent equations which are free
of the cyclic permutations. The resulting equations are

[ak al ]+a +p a [ak a(]+

=P'(4 ak+~ k«),

[ak, a(]+a '+p'a" [ak, a(]+

=p (ala al+aka a().

(1 1 a)
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(Here and below we use Kronecker deltas as a shorthand
for Dirac deltas. ) The analogs of (6a) and (6b) are

ak I
0& =0, (12a)

akal I
0& =&k, l I

0).
Unlike the case of a single oscillator, in which the ana-
logs of (11) and (12) determine all matrix elements of

(121 )

for the number operator which satisfies [N, a] = —a.
The expressions (7) and (8) allow generalization of the
IK oscillator to parons of higher order. We will discuss
this elsewhere.

To discuss the field theory based on the IK oscillator,
we derive the trilinear commutation relations for an arbi-
trary set of momentum-dependent operators. We do this
in two steps. First, replace the operators a and a in

(5a) and (5b) by

Kag+Xa(+ pa
[(c~+X +P +2((ck6k(+) P6( +Px6 k)]

(lo)



VOLUME 59, NUMBER 22 PHYSICAL REVIEW LETTERS 30 NOVEMBER 1987

the a's and a 's, (11) does not determine all matrix elements. We supplement (11) with analogous commutation rela-
tions in which the anticommutators are replaced by cornmutators and unknown parameters are introduced,

[ak al] —a fl(~k al ~l ak)+f2(aka al ala ak)

[ak al] — f3(~kmal ~l ak ) +f4(aka al ala ak ).

(13a)

(i3b)

Equations (13a) and (13b) determine the deviations from the Pauli principle for antisymmetric states while (1 la) and

(1 lb) determine the deviations from the Pauli principle for symmetric states. We remark that, in general, higher de-

gree terms might occur in the commutation relations for the commutators. To see if the form (13a) and (13b) suffices,

and to determine the unknown parameters, we impose local commutativity on the theory. Specifically, we require that
the charge density and the field be relatively local,

[p(x), y(y) ] —~,=y, = —S(x —y) y(y). (i4)

We require that the charge density be bilinear in the spinor field and allow arbitrary coefficients for the two orders of
the field,

P(X) =C 1 'I/I (X)P(x)+C2IP(x) I/f (X). (is)

In momentum space, (15) has an integration over momenta. It is easier to work with a relation which is not integrated
over momenta, and so we assume the stronger relation,

[p(x,y), y(z)] —~,=~, =,,= —
—,
' [6(x —z) I/I(y) + 6(y —z) t/I(x)],
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' c I [y'(x) I/I (y) + y'(y) y(x) ] + —,

' c p [y(y) y'(x) + y(x) yt (y) ].

In momentum space this is
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Now we use (11) to replace anticommutators of the a's and (13) to replace commutators of the a 's and require that
(17) be satisfied identically in terms of the form a and aata. These conditions impose four constraints on the six pa-
rameters, CI, c2, f;, i = I to 4. The c's are fixed as are two of the four f's [We note t.hat the CI 2 equal the 2 I 2 of (9).]
In general, the expression for the left-hand sides of (13a) and (13b) do not have the correct P 0 and P 1 limits;
however, the linear combination of (13a) and (13b) which is free of the undetermined f's does have the correct limits.
We adopt this as our new commutation relation:

(2 —p )[ak, al] —a +(I —2p )a" [ak, al] —=(1 p+lj )(Sim—ak —6kmai)+3(1 —
p )(ala ak —aka al)

Since (Sb) was redundant for the single-oscillator case, we consider the possibility that only one linear combination of
(1 la) and (1 lb) is necessary. We test this by assuming a commutation relation analogous to (18) for the case involv-

ing anticommutators and require that the locality condition (16) or, equivalently (17), still be satisfied. We find that it

is satisfied if

(2 —
p )[ak, all+a —(I —2p )a [ak, al]+ = —(1 —

II3 +p")(6k a/+6/ ak)+(1+p )(aka a/+ala ak). (i9)

We take (18) and (19) and their adjoints as the commu-
tation relations for the paronic Fermi fields of order 2.
[The commutation relations with only annihilation
(creation) operators follow from the commutation rela-
tions with both annihilation and creation operators. ]
Both (18) and (19) are implied by a trilinear commuta-
tion relation closely related to (17). To extend the com-
mutation relations to annihilation and creation operators
for particles and antiparticles, replace a by a linear com-
bination of b and d, and a by the corresponding ad-

joint, where the b's and d's are the operators for parti-
cles and antiparticles, respectively, in the notation of
Bjorken and Drell. The orthonormality properties of
the Dirac spinors lead to eight trilinear commutation re-
lations for combinations of annihilation and creation

l operators for particles and antiparticles. The commuta-
tion relations can also be written in position space. We
will give details about the commutation relations else-
where. We emphasize that the choice of these trilinear
commutation relations, instead of bilinear commutation
relations, for the particle and antiparticle operators
suppresses states which are symmetric in particles and
antiparticles and extends the violations of the Pauli prin-
ciple to states containing both particles and antiparticles.

We make explicit the way in which our theory avoids
the quantum-mechanics and quantum-field-theory re-
sults which absolutely prohibit transitions between nor-
mal states and states with just one abnormal particle.
Our theory uses a paronic Fermi field of order 2 in which
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the double occupancy of symmetric states, which is fully
allowed for ordinary parafermi fields of order 2, is
suppressed by an amount parametrized by P. For P I,
the ordinary p=2 parafermi field is reached; for P 0,
the double occupancy is fully suppressed and the theory
is equivalent to a Fermi theory. There is never any
"mixing' of diferent kineds of statistics. We illustrate
our theory with electrons assumed to be paronic. If two
paronic electrons are brought into contact, then with
probability 1

—P /2 the two-electron state will obey the
Pauli principle and with probability p /2 the state will
violate the Pauli principle. The states will retain their
statistics as long as they remain intact. If an electron is
removed from the system and brought into contact with
another electron, the new two-electron state will again
obey or violate the Pauli principle with probabilities
(1 —P /2) and P /2, respectively. Analogous, but more
complicated, results hold for many-electron systems.

We suggest two types of experiment to put bounds on
p. The probability of finding an atom in which an elec-
tron violates the Pauli principle is of order p . In stable
matter, such electrons would long ago have made transi-
tions to the lowest allowed state; thus we do not expect to
observe x rays. Rather such atoms could be detected by
exciting them and observing their spectra. It will be
difficult to bound p by less than 10 with spectrosco-
py. Our second suggestion is to bring slow electrons in
contact with an atom and look for x rays coming, with
probability p, from a transition of an electron in a high
Pauli-principle-violating state to a low-lying such state.

An efficient way to do this would be to run a high
current through a metal and to look for x rays while the
current is running. This should give strong bounds on

p . The old experiments of Ref. 4 are not tests of the
Pauli principle; indeed, no high-precision tests of the
Pauli principle have been made. Analogous experiments
can be made for nucleons in nuclei. We will give further
phenomenological analysis elsewhere.
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