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Generic 1/f Noise in Chaotic Hamiltonian Dynamics
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We describe a mechanism for generic I/f noise in nonintegrable Hamiltonian systems. The phe-
nomenon is observed in the velocity fluctuations of a particle in a 2D periodic potential and is associated
with anomalously enhanced deterministic diAusion. It is explained in terms of a renewal process and
trapping in a hierarchy of nested cantori.

PACS numbers: 05.45.+b, 05.40.+j, 66.30.—h

Random processes whose power spectral densities
S(co) diverge like ro ' with a= 1 for co 0 are known
as 1/f noise. ' The phenomenon has attracted the atten-
tion of physicists for some decades, e.g. , because of the
pecularity that the random variable has an infinite mean
square deviation. Although this might appear unusual,

1/f noise is found ubiquitously in various scientific dis-
ciplines. It was therefore speculated whether it might
originate from a general mathematical mechanism. ' In
particular, with the spread of nonlinear dynamics, many
authors have wondered whether this field could bring
forth such a mechanism and explain 1/f noise as a chaot-
ic phenomenon. The earliest and now best understood
mechanism of this type was proposed by Manneville and
Pomeau and depends on the existence of a marginally
stable fixed point. It was observed in Rayleigh-
Benard experiments and Josephson-junction circuits but
operates only under special circumstances. It thus can-
not account for 1/f noise as a generic and typical
phenomenon, as it arises, e.g. , in metallic films. '

In the present Letter we describe a new mechanism
that gives rise to 1/f noise as a generic phenomenon in

certain chaotic systems and is closely related to the gen-
eric structure of phase space of nonintegrable Hamiltoni-
an systems. We have studied the classical dynamics of a
particle moving conservatively in a two-dimensional
periodic potential ~ We have found that the power spec-
tral density S(co) of velocity ffuctuations typically
diverges like co

' (with 0.7 ( a ~ 1.1) for diffusive
chaotic motions. The diffusion is anomalous, i.e., the
mean square displacement of the particle diverges like
t'+ for a & 1 and like t for a~ 1. Similar to other
cases this 1/f noise is caused by trapping periods in

certain regions of phase space. The origin of trapping,
however, diff'ers entirely from those cases and from
excess noise in the Sinai billiard. Here it is the trapping
in a self-similar hierarchy of cantori. We give a statisti-
cal description in terms of a renewal process and a ran-
dom walk on a hierarchical lattice. The latter is related
to a Markov tree model that was proposed to explain
long-time tails in area-preserving maps. ' It should be
pointed out, however, that the Markov tree model alone
does not exhibit 1/f noise, but on the contrary leads to a

For the potential we assume the first terms of a 2D
Fourier series for simplicity,

V(x,y ) =A +8 (cosx + cosy ) + Ccosx cosy. (2)

For numerical calculations we will use the parameters
A =2.5, 8=1.5, and C=0.5, which represent an egg-
carton potential with minima at V=O, saddle points at
V =2, and maxima at V =6. It is worthwhile to point
out that the deterministic equation of motion following
from Eqs. (1) and (2) already exhibits diff'usive motions,
while in solid-state physics one usually considers random
forces as the origin of diftusion. ' The system is nonin-
tegrable because of the coupling term C. For energies
E ~ 2 the chaotic motion remains confined to a single
potential well. For E) 2 the particle can move across
the saddles from cell to cell.

We have numerically integrated the equations of
motion,

x =(8+Ccosy)sinx, y' = (8+Ccosx)siny, (3)

and performed a power spectral analysis of the velocity.
Here we focus on a description of the observed 1/f noise;
more detailed results will be presented elsewhere. ' De-
pending on the initial condition the particle carries out

vanishing velocity power spectrum at m =0, when ap-
plied to a map on a compact space. Furthermore we
stress that the 1/f noise reported here is not a property
of a merely mathematical model, but is observed in a
physical system. The model of a particle in a periodic
potential is a paradigm in solid-state physics. Although
an idealization, it arises in various contexts, e.g. , for the
channeling of ions in crystals, '' for fast ion conductors
(superionic conductors), ' and for the dynamics of an
electron in a crystal when treated classically. Because of
the simplicity of the model it is presently not clear, how-
ever, whether the observed phenomenon might ultimately
be related to 1/f noise in metallic films.

We study the dynamics of a classical particle in an an-
alytic two-dimensional periodic potential on a square lat-
tice,

H= —,
'

p + V(x,y).
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FIG. 2. Poincare surface of section at the boundaries of the
cells (x =2am) for E 4.0. The points represent particle tra-
jectories leaving the cell in the perpendicular direction (free
paths). Position is measured in units of 2'.

FIG. 1. The velocity power spectral density of deterministic
diffusive motions exhibits l/f noise S(ro) —co ', here for
E =4.6.

periodic and quasiperiodic drift motions and diffusive
motions. The latter have a persistent character with long
free paths between trappings in a well. We have not
found indications of tails in the distribution of trapping
times in a cell. The velocity power spectral density de-
fined as

TABLE I. Variation of the noise exponent a with the parti-
cle energy E.

2.5
3.0
4.0
4.25
4.35
4.6

u(~ O. l)
0.8
0.7
0.75
1.0
1.1
1.0

S(ro) = (v(t) v(0))e' 'dt (4)

was determined with the segment averaging method (SO
segments of length 1024). We have found that in a
broad energy range (at least 2.5 ~ E ~ 4.6) the diffusive
motions are associated with 1/f noise S(co)—ro with
a=i. An example is shown in Fig. 1; the exponent a
varies to some extent as shown in Table I. Below E =2.5
spectral analysis is dificult and below E =2.0 diff'usion

does not exist. Above E =4.6 the spectrum levels off' at
small frequencies.

In order to understand the origin of the 1/f noise we
have determined Poincare surfaces of section at the
boundaries of the cells at x =2rrn (Fig. 2). Every point
in Fig. 2 thus represents a motion of the particle leaving
the cell in the perpendicular x direction, and localized
motions cannot show up. In the center island there are

wp(T)dT = (T/(T))+(T)dT. (5)

periodic and quasiperiodic orbits, which are not shown in
Fig. 2. They pertain to unlimited free paths (drift
motions), as the particle consecutively crosses the edges
of the cells. On the other hand, orbits in the chaotic sea
surrounding the island only remain there aconite time. '

When they reach its outer boundary, the energy condi-
tion to cross the saddle is no longer fulfilled. The free
path of the particle thus persists only a finite time and
gives rise to diffusion.

Near the inner boundary of the chaotic sea, the orbit
seems to have a higher density, which we attribute to the
finite observation time. This fact also points to the ori-
gin of 1/f noise. The orbit can be seen to stick near
daughter islands surrounding the central island in Fig. 2.
To illustrate this in more detail Fig. 3(a) shows three is-
land chains indicated by representative quasiperiodic or-
bits. They were isolated by selection of special initial
conditions. The magnification in Fig. 3(b) reveals three
levels in a hierarchy of daughter islands around daughter
islands. We know that generically this hierarchy contin-
ues ad infinitum.

' Every island in the chaotic sea is
encircled by cantori, ' partial barriers which the orbit
can penetrate. The deeper the orbit enters into the
hierarchy of nested cantori, the longer it remains trapped
before it can leave the chaotic sea. '

We now outline a statistical description of the above
mechanism; more details will be found in Ref. 13. We
recall that trapping of the orbit in the chaotic sea implies
a free path of the particle trajectory. We treat succes-
sive free paths as statistically independent and describe
their duration T by a probability density +(T). This is
justified by the randomizing effect of intermittent local-
ized chaotic motions. The probability wp(T)dT that at
an arbitrary time f'=0 the particle is in a free path of
duration T is proportional to T,
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FIG. 3. (a) Isolation of island chains near the boundary of
the central island of Fig. 2. (b) Magnification of the box
shown in (a), displaying the self-similar hierarchy of daughter
islands within the chaotic sea.

wo, (T)dT =(T) '(T —t )+(T)dT

Approximating the longitudinal velocity by its average
v p along the paths gives us the velocity autocorrelation
function C(l) =(v(0) v(t)) as the integral of Eq. (6)
over all possible paths:

The probability that this path persists until time t is the
fraction (T —t)/T The probabili. ty wo, (T)dT that the
particle is in a free path of length T between time 0 and
t is thus

always to be a critical Kolmogorov-Arnol'd-Moser torus.
The latter exhibits scaling properties' implying scaling
also for the fluxes across the encircling cantori. ' Em-
bedded between those cantori are the island chains
(daughter islands) where the scheme repeats hierarchi-
cally on a finer scale (Fig. 4). Let us assume that suc-
cessive transitions across low-flux cantori can be treated
as a Markov process. These transitions then represent a
random walk on a hierarchical lattice or Markov tree.
Following Ref. 9, we number the area between cantori
by a sequence of integers 1=l&l2. . .l„,as shown in Fig. 4.
We assume a constant branching ratio m and denote by
p, (I

I
I') the conditional probability that the first transi-

tion to 1' occurs at time t, if at time 0 there was a transi-
tion to 1. The analogous probability for direct transitions
(without intermediate states) is denoted by d, (1

I
I') and

is easily determined from the transition rates. The dura-
tion T of a free path (=trapping time in the chaotic sea)
is the time of the first transition from states k to the
outer state 0, and thus its distribution is

2 oo

C(t) = I (T —t)W(T)dT.
(T) "& (7)

Pl

~(T) g p, (k I
0).

It =1

C(s) ~s '+(T) 's '[4 (s) —I] (8)

Events consisting of two or more free paths between 0
and t have equal probabilities to end with positive or
negative velocity and thus do not contribute to C(t). In
terms of the Laplace transforms C(s) and +(s), Eq. (7)
turns into m

+ g d, (k Ikj)p, —,(kjl0)dr,
j= 1

(10)

The conditional probability must satisfy a set of coupled
integral equations:

p (k
I
0) =d, (k I 0)

from which we easily obtain the spectral density as
S(cu) =2 ReC(6 —itu).

In a second step we would like to obtain an expression
for +(T). Too little, however, is known with mathemat-
ical rigor about the transport across cantori. We are
thus forced to make a number of assumptions below.
We do know rigorously that generically every island is
encircled by cantori, ' a sequence of which has little flux
and acts as barriers. ' The sequence converges to the
boundary circle of the island (Fig. 4), which is believed

p (kj I 0) =„,p, (kj I k)p —,(k
I
0)dr, (»)

which can be solved by Laplace transformation and a
scaling Ansatz for the functions p, . This leads to the
Laplace transform of +(T), '

4'(s) = I+s f(s), (12)

where f(s) is an analytic function and the exponent a is
determined by the scaling of transition rates. From Eqs.
(8) and (12) we obtain the spectral density as S(cu)
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—co
' and thus qualitatively recover the observed I/f

noise. Determination of the numerical value of a
remains a problem, which is discussed in more detail in

Ref. 13. Finally, we discuss how our results are afI'ected

by weak dissipation (and external fluctuations). We ex-
pect that details of phase space below a certain size are
blurred, leading to a low-frequency cutoff' in the spec-
trum. Moreover, one might wonder whether the whole
hierarchical organization of phase space breaks down. It
was found in other models, however, that the island
structure of phase space still shows up under sufficiently
weak perturbation. '
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