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Reversible cellular automata are used to investigate the thermodynamic behavior of large systems.
Additive conserved quantities are regarded as the energy of these models. By the consideration of a
large system as the sum of a subsystem and a heat bath, it is numerically shown that a canonical distri-
bution is realized under certain conditions concerning the conserved quantities.

PACS numbers: 05.20.—y, 02.50.+s, 05.45.+b

The foundation of statistical mechanics has not been
established as yet. Ergodicity is not generic for classical
mechanical systems with a finite number of degrees of
freedom, as the Kolmogorov-Arnol’d-Moser theory has
revealed.! In addition, if a finite system is not ergodic,
the same kind of infinite system can be ergodic. The
noninteracting ideal gas? and the complete harmonic
crystal® give such examples. No general theorem is
known for the ergodicity of infinite systems.

Reversible cellular automata provide us with clear ex-
amples to investigate the problem.* A cellular automa-
ton is a dynamical system composed of discrete variables
on a discrete space-time. The states of all the variables
are synchronously updated at every time step according
to a definite rule, which is locally defined and uniform in
space. If a cellular automaton is reversible, that is, if
each configuration has a unique predecessor, it automati-
cally satisfies the Liouville theorem by virtue of the
discreteness of the variables. Consequently, the statisti-
cal mechanics of the model can formally be constructed,
provided that it has a conserved quantity which can be
regarded as a kind of energy. The existence of such
quantities has been shown by Pomeau® for a particular
type of reversible cellular automata. Then a direct com-
parison is possible between the results of the statistical
mechanics (ensemble average) and those of the dynamics
(time average).
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Moreover, such investigation justifies the recently ad-
vanced applications of cellular automata as computation-
al tools. The features of cellular automata are strikingly
suitable for execution by digital computers. In particu-
lar, fast simulations are possible without round-off er-
rors. Taking advantage of this, a deterministic Ising dy-
namics has been devised for Monte Carlo calculations,®
and lattice-gas automata for simulations of the Navier-
Stokes equation.” Both of these are reversible cellular
automata constructed so as to satisfy necessary sym-
metries and conservation laws at the microscopic level.
They are no more than crude approximations or artifacts
on the microscopic level. Nevertheless, their macroscop-
ic nature is expected to be physical, provided that they
show standard thermodynamic behaviors, such as canon-
ical distribution, local equilibrium, and the Green-Kubo
formula. Although successful simulation results have
been reported,® it has not been clarified for what condi-
tions the thermodynamic behavior is realized. This is
just the problem which I will consider.

In this Letter, I concentrate on the realization of equi-
librium statistical mechanics (canonical distribution). I
define a set of reversible cellular automata and classify
them with respect to a kind of additive conserved quanti-
ty. It is shown that the canonical distribution is realized
for a certain class of reversible cellular automata and
their conserved quantities.
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The models I deal with are the one-dimensional rever-
sible cellular automata whose local rules are of the form*

O',I+]=f(0’,*’—1,0’,",0’,”—1)XOR6,", ¢D)]

it =al, (2)

where of and &} are Boolean variables of site i at time ¢
which may take values O or 1, f denotes a Boolean func-
tion of three variables, and XOR means the “exclusive
OR” operation. I call these models elementary reversible
cellular automata (ERCA). The phase space is defined
for ERCA with N sites, where I usually impose the cy-
clic boundary condition to keep the reversibility, as the
set of configurations (61,61, ...,0n5,6x). Thus the
phase space has 4" configurations in it. Notice that the
time-reversed evolution is obtained with the same rule by
an exchange between the o’s and &’s for a configuration.
This means that ERCA are not only reversible but also
time-reversal invariant as are classical mechanical sys-
tems.

There exist 22'=256 distinct Boolean functions of
three variables and accordingly as many ERCA. I
denote each ERCA by the number ZFYV‘K24“+2V+‘
X f(u,v,x), specifying f in Wolfram’s convention,® and
an R appended to it. Thus, for example, if
f(x,y,z) =xXORz, the ERCA is called 90R. Sym-
metries concerning reflection (left-right symmetry) and
Boolean conjugation classify the set of ERCA into 88
equivalence classes, in each of which corresponding or-
bits of different ERCA are transformed into each other
by the symmetry transformations. The properties con-
sidered in this Letter are qualitatively unaffected by the
transformations. Hence, 1 consider only the minimal-
numbered representatives of each class.

To construct the statistical mechanics of ERCA, ener-
gy has to be introduced. Since an ERCA does not have
an a priori Hamiltonian, I define the energy as a con-
served quantity which is additive and propagative.

The additivity means that the energy must be written
as a sum of identical functions of local variables over all
sites. I have examined, therefore, the following additive
quantities as candidates for the energy of ERCA:

=3, F(0i,0i+1,6:,6i+1), 3)

where F is an appropriate function chosen according to
the rule of ERCA. While the restriction that the func-
tion F depend only upon two neighboring sites is made
for simplicity, it equips the quantity @ with the picture
that the bond (i,i +1) has an energy

Fii+1=F(0i,6,+1,6:,6i+1).
The capability of propagation is connected with the
nonexistence of local conservation laws. When a locally

defined quantity does not depend on time, the system is
said to satisfy the local conservation law. Depending on
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its value, such a quantity often acts as a “‘wall”’ beyond
which no information can propagate.'® Clearly the pres-
ence of such walls obstructs the realization of the statist-
ical mechanics. The number of conserved quantities is
too many in such cases.

I carried out the classification of ERCA in terms of
the presence of additive conserved quantities and walls.
The conservation of @ was examined by straightforward
calculation with use of a polynomial expansion of F. The
presence of walls was checked both numerically and
analytically. As the result, I have obtained the following
three types: (i) no additive conserved quantities written
as (3) exist (this type contains 41 classes); (ii) additive
conserved quantities exist, but not local conservation
laws which lead to walls (7 classes); (iii) both additive
conserved quantities and walls exist (40 classes).

To see the realization of equilibrium statistical
mechanics, I numerically examined the distribution func-
tion for the energy of a subsystem in the following
manner. Consider a large system of size N with the
periodic boundary condition. A particular series of n
(K N) bonds is distinguished as a subsystem from the
remaining part, which is regarded as a heat bath. The
energy of the subsystem is given by the sum of energies
assigned to the n bonds. The density of states D(E) is
calculated as D(E)=4"""!x(the number of configu-
rations with the subsystem’s energy E) by examination
of the 4"*! possible configurations for the subsystem.
Then, according to statistical mechanics, the distribution
function for the energy of the subsystem P(E) should be
asymptotically proportional to D(E)e ~#E in the limit as
N,n— oo (N>n) with the energy density ¢ =®d/N
fixed. Furthermore, the inverse temperature § is deter-
mined by the relation ¢ = — (8/88) InZ through the par-
tition function Z =Ye ~P®. In particular, the relation is
obtained as B=In[(2 —¢)/¢] for the energy (3). There-
by I calculated P(E) in a run with T iteration steps as
P(E)=T "'x(the number of time steps with the
subsystem’s energy E), where the run started from a ran-
dom configuration with given total energy ®. Then, the
linearity of In[P(E)/D(E)] vs E was checked, and the
slope —p was compared with the analytical result of the
statistical mechanics.

Only the type-2 ERCA have the possibility of thermo-
dynamic behavior. As a matter of fact, I have found
that the canonical distribution is realized for the energy
type-2 ERCA. In the following, I illustrate this by ad-
ducing examples.

The quantity @, given by (3) with the function

Flx,y,2,9)=(x =)+ —y)?, 4)

is conserved for the equivalence classes represented by
rules OR, 2R, 4R, 10R, 18R, 24R, 26R, and 90R. For
the former six rules local conservation laws exist and
therefore the statistical mechanics fails. On the other
hand, the propagation of the energy is unbounded for
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FIG. 1. Time-evolution pattern of the energy given by Eq. (4) for rules (a) 90R and (b) 26 R. The space-time point (i,z) is dot-
ted by blue when F/;+; =1 and by red when F};+, =2. Undotted points mean that F =0 there. The initial conditions are the same

for both figures.

rules 90R and 26R, as is shown in Figs. 1(a) and 1(b),
respectively.

For rule 90R, each energy ‘‘quantum” moves with a
fixed velocity = 1, which is not affected by other quanta.
Thus one can identify rule 90R with the ideal gas in
which the velocities of constituents are * 1. As was
stated in the beginning, the ideal gas has been proved to
be ergodic (in fact Bernoulli) in the thermodynamic lim-
it. Consequently the canonical distribution should be
satisfied for rule 90R in the same limit, where the num-
ber of iterations 7 has to be less than the cycle length of
orbits. For rule 90R with N sites, the cycle length being
at most NV (when N is even) or 2/V (when /V is odd), the
limit must be such that V=T — oo, Figure 2 shows the
result of the simulations under the condition that N =T.
As the system size /V becomes large, the canonical distri-
bution becomes precise and applicable for a wide range
of the energy of the subsystem. This is a direct conse-
quence of the central-limit theorem.

On the other hand, for rule 26R, the cycle length is
typically of order 2. Then I can take the number of
iterations much larger than the system size. Since the
number of total configurations is 4%, the finite system is
not ergodic. Although no known theorem corresponds to
this case, the canonical distribution is well satisfied.

—_
o

(3]

log (P(E)/DIE))

1 GO 5 10 15 E
FIG. 2. Plot of In[P(E)/D(E)] vs subsystem’s energy E for
rule 90R and the energy (4). Simulations were carried out for
three systems with sizes 100 (squares), 2000 (triangles), and
50000 (circles). The size of the subsystem is n =14. The solid
line was obtained by a least-squares fit for the last case.

2501



VOLUME 59, NUMBER 22

PHYSICAL REVIEW LETTERS

30 NOVEMBER 1987

_2 n 1 e
0 05 1.0 15 ¢

FIG. 3. Comparison between numerically obtained inverse
temperature and the analytic B-¢ relation for rule 26 R. Simu-
lations were carried out for systems with size 103. For each
value of energy density ¢, Sx 10° iterations were made.

Namely, In[P(E)/D(E)] is proportional to E and the
slope — B agrees very well with the result of the statisti-
cal mechanics, as shown in Fig. 3. For other type-2
ERCA, similar results were also observed.

For a dynamical system to realize statistical mechan-
ics, its subsystem has to forget the memory of the initial
condition. In ERCA, the capability of propagation en-
sures it. For example, it is done in rule 90R by the trav-
eling motion of the initial configuration. Since it returns
in time N for the finite system with V sites, I had to take
the number of iterations 7 less than /V to see the behav-
ior of the infinite system. On the other hand, the
memory is lost by diffusionlike motion through collisions
in rule 26 R. Consequently 7 could be taken much larger
than N in that case, and then high precision was
achieved for relatively small N. This is due to not only
the central-limit theorem but also the spontaneous pro-
duction of stochasticity. The difference between these
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two rules is their effect on other thermodynamic behav-
iors. In fact, a temperature gradient can be supported in
rule 26 R, but not in rule 90R. This and other considera-
tions, in addition to more details on the present examples
and other cases, will appear elsewhere. '

In conclusion, I have demonstrated that reversible cel-
lular automata yield the canonical distribution function
in terms of an additive conserved quantity if it is pro-
pagative. I would like to stress that the present models
are generally nonergodic in finite systems. The realiza-
tion of the canonical distribution is connected with the
ergodicity of infinite systems.
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FIG. 1. Time-evolution pattern of the energy given by Eq. (4) for rules (a) 90R and (b) 26 R. The space-time point (i,7) is dot-
ted by blue when F/;+, =1 and by red when F{;+, =2. Undotted points mean that F =0 there. The initial conditions are the same

for both figures.



