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Instability and Deformation of a Spherical Vesicle by Pressure
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The infinitesimal stability of a spherical vesicle (closed membrane) is studied as a function of the pres-
sure difI'erence between the outer and inner media. !t is found that above some threshold pressure the
spherical vesicle can be deformed into a shape associated with Ith-order spherical harmonics. The com-
parison with numerical examples calculated previously by Deuling and Helfrich shows good agreement.
Some applications to red blood cells are discussed.

PACS numbers: 82.70.—y

Theoretical investigations of vesicles (closed mem-
branes), in the beginning, were devoted to the explana-
tion of the shapes of red blood cells. Those cells possess
a well-known biconcave-discoid shape under normal
physiological condition. They can recover their initial
shape after deformation when the external forces that
produce the shape change are removed. Various at-
tempts have been made to explain this peculiar shape but
failed, ' as they required changes of membrane area in
the transition from sphere to disk (elastic rubber mod-
els), or predicted shapes which are dumbbell-like and not
to be observed (curvature elasticity model, but without
spontaneous curvature).

In view of these difhculties, Helfrich has discussed
the bending elasticity of fluid membranes as formed by
lipids and proposed that the shapes of vesicles and,
perhaps, red blood cells represent minima of the curva-
ture energy

F = —,
' k, ft (c)+cp —co) ds+Ap „dv+k IItds, (1)

where k, is the elastic constant and c~, c2, and co are the
two principal curvatures and the spontaneous curvature,
respectively. The latter serves to describe the asymmetry
of the membrane or its environment and to treat shape
transitions of red blood cell by chemical agents. The
Lagrange multipliers hp and k take account of the con-
straints of constant volume and area, hp =po —p; is the
osmotic pressure difference between outer and inner
media, and X a tensile stress. Instead of the last term of
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q. (1), Jenkins introduced a local area constraint by
yds, where y is a Lagrange function varying with posi-

tion. But in the following we show that this does not
affect the results.

Various solutions of

r =ro+ eYIm~ (3)

where Y~ is a spherical harmonic, and derived

bF = —,
' k, (e/ro) [l(l+1) —2] [l(l+1) —6]. (4)

Equation (4) means that, firstly, hF is independent of co
and, secondly, l=l, 2 satisfy SF=2 so that the vesicle
can wander freely in a multidimensional space of ener-
getically equivalent configurations. However, Helfrich
has suggested earlier that any infinitesimal deformation
of a spherical vesicle corresponding to higher Legendre
polynomials than P2, i.e., Y20, would require larger pres-
sure differences than the threshold value for ellipsoidal
deformations, which is

ap, = (2k, /ro ) (6 —coro). (5)

In other words, the stability of a spherical vesicle de-
pends on hp, co, and ro. So there seems to be a puzzle.

In this Letter we try to provide a clear answer to this
problem. On the basis of detailed analytic calcula-
tions, " we have obtained general stability conditions for
spherical vesicles. They indicate a branching phenom-
enon of deformations under pressure: Any infinitesimal
deformations corresponding to spherical harmonics
higher than YI would require a pressure difference
larger than the threshold value

shapes, but their stability has not been checked
thoroughly.

Recently, Peterson ' has studied in detail the prob-
lem of the stability of membrane shapes. But it is not
completely clear that these results about stability are
correct. For example, in the spherical limit, ' Peterson
parametrized shapes near the sphere ~=ra as slightly
distorted spheres,

6'F =0, hp& =(2k, /ro3) [l(l+ 1) —coro] (1=2,3, . . .). (6)

under the condition of rotational symmetry, have been
numerically investigated by Jenkins and earlier by
Deuling and Helfrich. ' Among the solutions there are
shapes strikingly similar to observed red blood cell

Obviously, Eq. (5) is included in Eq. (6) as the special
case of l =2. Comparing (6) with the numerical exam-
ples calculated previously by Deuling and Helfrich, we
find beautiful agreement of the pressures. Some applica-
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where H and K are the mean curvature and Gaussian
curvature defined (in dealing with a sphere, ci ' and c2 '

are taken to be the radius of the sphere) by

H=
2 (ci+cp), K=c]c2, (g)

and 6 is the Laplace-Beltrami operator on the surface
defined as

A=(1/Jg)8;(g"Jg 8, ).

Here

g;, =ci;Y B,Y, g"=(g;, ) ', g=det(g;, ),

with |li =t)„and 82=|)„.
First, one can find the equation

Ap+ 2dH+ 2k,'H(H —K) + k,'AH =0

(io)

derived by Jenkins [Ref. 4, Eq. (2.35)] as a special ex-
ample of Eq. (7) with cp =0, d = —)i., and k,'=2k, . This
shows that it makes no diA'erence whether the area con-
straint is global or local.

It is obvious that a sphere is always a solution of Eq.
(7) if its radius satisfies the following equation:

8pr p + 2),rp —k, corp(2 —corp) =0, (i2)

which is the same as Eq. (47) in Ref. 2. To study the
stability of the sphere, we consider the slightly distorted
spheres

r =rp+gai Yl

where I ~ 1 and m = —l, —I+1, . . . , l. With a lengthy
calculation, "we have obtained their deformation energy
as follows:

SF=g
~ a, ~

'harp' —al(l+ i )

+k, [l(1+1)l /2rp], (14)

where

tions of Eq. (6) to red blood cells are discussed.
Theoretically, the membrane of a vesicle may be de-

scribed as a closed surface in Euclidean three space given
by vectors Y(u, U ), depending on the two real parameters
u and v. From Eqs. (1) and (2), we have derived" the
equilibrium-shape equation as

Ap —2XH+4k, (H+ —,
' cp)(H —K —

—,
' cpH)

+2k, AH =0, (7)

where Apl are defined by Eq. (6). Obviously, in this
case, nonzero a~ will reduce the curvature energy. In
other words, a deformation corresponding to higher
spherical harmonics than Yj can occur. The case of
1=1 means only the trivial translation of the sphere, and
physical deformations begin only at l =2. Accordingly,
we have 6F =0 for 1=1.

The stability considerations indicate an interesting
branching phenomenon of the instability and deforma-
tion of the sphericles. Jenkins predicted the same
phenomenon on the basis of Eq. (11), which he linear-
ized, and he also found it in his numerical calculations
for 1=2,3 and cp =0. However, for larger l and cp~0, it
has not been checked. Fortunately, there is no need to
do it afresh. More than ten years ago, Deuling and Hel-
frich calculated a large variety of rotationally sym-
metric shapes of vesicles. Among them the three types
of contours having triangular, pentagonal, and heptago-
nal cross sections, respectively (cf. Figs. 5, 6, and 7 in
Ref. 6) are examples of the deformation of nearly spheri-
cal vesicles. Using their data (corp= —8.0 and 1.43
~ Ap/Ap, ~ 1.70, and Ap/hp, =2.7 and 4.40, respec-
tively), we make a check as shown in Table I and find
that the deformations correspond exactly to the models
of l =3, 5, and 7, respectively. It is well known that the
spherical harmonics Yip are rotationally symmetric about
the polar axis, i.e., cross sections of the shape along the
axis will show some 1th-polygon symmetry. This is why
the three contours have triangular, pentagonal, and hep-
tagonal cross sections, respectively. The agreement of
the pressures between theory and numerical calculation
is beautiful.

The observed changes in the shape of red blood cells
may provide other examples. The so-called' triconcave
and quadriconcave red cells produced by hypotonic
media (see Figs. 105—107 in Ref. 12) may be the defor-
mations associated with I =3 and 4, respectively. And,
in a sense, the normal red blood cell, the so-called disco-
cyte, represents a branch of I =2 because of its biconcave
shape. A calculated contour of this type is shown in Fig.

TABLE I. Comparison of theory with numerical examples
calculated by Deuling and Helfricb (Ref. 6). Here
cpl'p = 8.0 and hp/Ap, are taken from Ref. 6, Api and hp are
calculated according to Eqs. (5) and (6). We take 2k, /r$ as
the unit of pressure.

& =
2 hPrp '+kcPpYp

(is)
l Api Ap/hp,

Cross
section

Figure No.
in Ref. 6

8= 4 dprp+ 2 k, (2+corp)rp

From Eqs. (14) and (15), we find that the coefficients
~ az ~

for 1 (j~ l in Eq. (14) will be negative when

(i 6)

2.7

4.40

2 14
3 20 1.43- 1.70 16.0-23.8
4 28
5 38 37.8
6 50
7 64 61.6

Triangular

Pentagonal

Heptagonal
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3(a) of Ref. 6. Here coro= —2.0 and dp/hp, =0.955
satisfy the model for hp, =hp2 as given by Eqs. (5) and
(6). These equations also predict that the deformation
may be induced by a change of eo under the constraint
hp =const. The so-called glass effect' of red blood
cells, which become echinocytic when they are near a
glass rod (see Fig. 100 'in Ref. 12), seems to have this
origin: Glass may increase the value of the spontaneous
curvature co by its chemical effect and, therefore, cause l
of Eq. (6) to be increased at a constant pressure
difference between the outer and inner medium of the
cell. As a result, the deformations represent spherical
harmonics of very high order. However, the shapes may
also be inAuenced by the shear elasticity of the red-cell
membrane.

In summary, our discussion shows that the pressure is
an important parameter in our understanding of the sta-
bility and deformation of spherical vesicles. This may
have physiological significance. The good agreement
with previous numerical calculations confirms our
theoretical prediction.
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