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Random-Matrix Theory and Universal Statistics for Disordered Quantum Conductors
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An Ansatz is proposed for the joint probability distribution of the eigenvalues of the transfer matrix in
the quantum transport problem, based on symmetry arguments and a "maximum entropy" hypothesis.
The local statistical behavior of the distribution is predicted to be that of the well-known random-matrix
ensembles of Wigner and Dyson; and this result is confirmed by independent numerical calculations. For
metals this behavior leads to size- and disorder-independent conductance Auctuations, and this approach
suggests an alternative framework for the scaling theory of localization.
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The importance of fluctuation effects in the study of
localization and quantum transport phenomena has been
appreciated for some time. However, early studies' fo-
cused on the one-dimensional problem in which there is
no regime of diff'usive (metallic) behavior. Recently the
presence of important fluctuation phenomena in the con-
ductance, g, of normal metals has been observed experi-
mentally and studied theoretically. The most striking
result of these investigations is that the statistical vari-
ance of the conductance, averaged over an ensemble of
metal samples with the same macroscopic characteris-
tics, satisfies

var(g) =1,
independent of the size of the sample or its average con
ductance (g is measured in units of e /h). Equation (1)
predicts much larger fluctuations in g than would be ex-
pected from classical reasoning and the correctness of
this prediction has been well confirmed experimentally.
However, the quantitative arguments for this result have
been based on perturbation theory or numerical simula-
tions which have not fully elucidated the fundamental
reason for the universality of the conductance fluctua-
tions.

Recently Imry has proposed a more fundamental ex-
planation for Eq. (1) based on the conjecture that the
transfer matrix, which determines the conductance, has
statistical properties characteristic of the well-known
random-matrix ensembles introduced by Wigner and
Dyson, the Gaussian orthogonal ensemble (GOE)
(describing systems with time-reversal symmetry), and
the Gaussian unitary ensemble (GUE) (describing sys-
tems without). These ensembles have been extremely
useful paradigms for studying nuclear energy-level distri-
butions, and more recently they have been widely em-
ployed in the study of the quantum mechanics of classi-
cally chaotic systems. In this paper we establish the
connection of the universal conductance fluctuations
(UCF) to random-matrix theory by both analytic and
numerical calculations. In addition, we propose that a
"maximum entropy" hypothesis (MEH) ' applies to

the quantum transport problem, and show that the UCF
follow naturally from this Ansatz.

We consider an ensemble of disordered conductors of
length L„and cross-sectional area Ly

' attached to
infinite perfectly ordered "leads. " The scattering proper-
ties of each conductor are completely characterized by a
unitary scattering matrix,

r t'
S=

t r'

(where r, t, and r ', t ' are the reflection and transmission
matrices from right to left and vice versa), which relates
the incident fluxes I,I' to the outgoing fluxes 0,0',

S I = 0
I' 0'

or by a transfer matrix, T, which relates the fluxes on
one side to those on the other,

I 0'
0

For a fixed energy, E, there will be N propagating chan-
nels in each direction, so that S and T are 2N x 2N ma-
trices. The conductance of the disordered region, for
N»1 and l/L„«1 (l is the elastic scattering length), is
given by3 g =Tr(t tt). From the definitions and the un-
itarity of S it follows that

g=Tr(ttt) =2Tr{[TtT+(TtT) '+2] 'j

(2)

where A =
4 [TtT+ (TtT) ' —21, tY;] are the N non-

degenerate eigenvalues of this 2Nx2N matrix, and the
form of A' implies A;.)0. Equation (2) hold for each
particular conductor, and we thus see that the
ensemble-averaged conductance, (g), just measures the
average number of eigenvalues of X in a small interval
near zero, e.g. , [0,1]. For a metallic conductor, (g))&1;
thus there must be many X; in this interval, and this
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number must decrease with increasing disorder, ap-
proaching unity as the metal-insulator transition. The
variance of g measures the fluctuations in the number of
X,. in the interval [0,1] from conductor to conductor; so
that if the A; were uncorrelated, one would expect
var(g) =(g), i.e. , nonuniversal fluctuations, typically
much larger than those predicted by Eq. (I). The validi-
ty of Eq. (I) thus requires a high degree of correlation in
the spectrum of X.

This point of view strongly suggests an analogy be-
tween the result of Eq. (1) and the phenomenon of spec-
tral rigidity observed in the spectra of complex nuclei.
Briefly, in many complex nuclei it is found that the
energy-level sequence is very regular. It deviates very
little from a uniformly spaced sequence and this devia-
tion only increases logarithmically with the numbers of
levels considered. This behavior implies a long-range
correlation of energy levels, and it has been quantitative-
ly understood by the hypothesis that the nuclei exhibit
statistical fluctuations characteristic of the GOE and
other related ensembles which can be shown to exhibit
such long-range eigenvalue correlations. In particu-
lar, Dyson and Mehta have shown for these ensembles
that in an interval L of the spectrum where the density is
constant, any linear statistic Z =g,f(X;) has a variance
which is independent of the average number of eigenval-
ues in L and typically of order unity (f is any smooth
function on L, and the sum is only over X, in L). As
Imry noted, if this result is valid for the matrix X, it im-
mediately yields Eq. (I), since g is essentially such a
statistic (note that the resistance, I/g, is not a linear
statistic). We give analytic arguments and numerical re-
sults that confirm this conjecture below.

In our problem the matrix X is determined in a com-
plicated manner from a random Hamiltonian, and we
find that, in general, this procedure does not generate
one of the standard ensembles. However, applications of
random-matrix theory to the nuclear and "quantum
chaos" problem have revealed that a much wider class
of random-matrix ensembles still exhibit the same fluc-
tuation behavior as the GOE or GUE. ' The reason for
this is that the spectral correlations are typically deter-
mined solely by the symmetries of the random matrices,
whereas the average spectral density is sensitive to the
specifics of a given model. In fact, it has been shown
that if an ensemble is as random as possible, given a cer-
tain spectral density, ' then its local spectral fluctua-
tions are determined solely by the symmetries of the ma-
trices. The assumption of a "maximum entropy" ensem-
ble has a precise meaning in terms of the minimization
of an information functional on the probability distribu-
tion of the matrices, ' P(X). We make such an Ansatz
for P(X),"'2 which implies that the joint probability
distribution of the eigenvalues, X;, has the form '

where f(X; ) is a function which is determined from the
average spectral density, cr(X), by the relation
f(X)=fdX'o(X') In ~X —X' ~. All the eigenvalue
correlations in Eq. (3) are contained in the Jacobian,
J([X;j), which is determined solely by the symmetries of
the X matrices. We emphasize that J([X;j) is not
known, as the symmetries of 4'do not correspond to any
of the previously studied ensembles. ' Thus it is unclear
whether the conjectured behavior of the [X;j is consistent
with the symmetries of X.

To derive J([X;j), we first consider the matrix TtT
appearing in Eq. (3), whose eigenvalues 4,;j are related
to [X;j by X; =

4 lk;+k; ' —2]. T has U(N, N) symme-

try; it preserves the norm
~
I

~

—
~
0

~
. It is convenient

to perform a unitary transformation on T, P =UpTUp,
where

1 I
Up=2 —i l

(this notation denotes N x N subblocks of 2N x 2N ma-
trices). The U, (N, N) symmetry of T implies that P is
symplectic: P tJP =J with

this symmetry of P represents current conservation. We
treat P and not T, because time-reversal symmetry im-
plies that P is real, whereas T is not, (of course P tP and
TtT have the same eigenvalues, 4,;j). Below we outline
the derivation for P real, and then indicate the
modifications required for a system without time-reversal
symmetry. The detailed derivations will be given else-
where.

Consider Q =P P, with P a real symplectic 2NX2N
matrix. We need to define a volume element dg in the
matrix space of Q, so that by a change of variables, we
can integrate over its eigenvectors, leaving the appropri-
ate Jacobian factor for the eigenvalues, J([X;j). We fol-
low closely Dyson's approach of Ref. 11. Define

Q+dg =P (1+dM)P. (4)

p(g) and the independent elements of dM define a class
of measures p(dg) on the space Q, where p(g) =+;
xexp[ —f(X;+X; ')] is by the Ansatz Eq. (3) indepen-
dent of the eigenvectors of Q. We can show that these
measures are independent of the choice of P, as any ma-
trix P' satisfying (4) must be related to P by an orthogo-
nal transformation. We now compute the independent
elements of dM explicitly.

Since Q =Q, it is diagonalized by a real orthogonal
matrix, R, Q =R DR. Since Q and D are both symplec-
tic, R can be chosen symplectic. Diff'erentiation of the
diagonalizing equation for Q gives

p([X;j)=J([X;j)Q exp[ —f(X;)], (3)
P dMP =dg =dR DR+R DdR+R dDR.

Define dR =dA R; then (R+dR)(R +dR ) =1 im-
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plies dA = —dA, and (R+dR)J(R +dR ) =J implies [dA, J] =0. Thus P dMP =R [DdA dA—D +dD}R, and
the crucial point now is that we are free to choose any convenient P to simplify this equation, because of the uniqueness
of dM. We choose P=D' R, giving dM=D' dAD ' —D ' dAD +D 'dD,

and integrating over the dA;~

distributions: the probability density of the nearest-
neighbor spacing, P(S) =a~S~exp( —bpS ) (atJ, b& are
known constants), and the statistic 8,3(L) which mea-
sures the deviation of a given eigenvalue sequence from a
perfectly uniform sequence, as a function of the average
number of eigenvalues in the sequence. Thus 8,3(L)
measures the spectral rigidity crucial for Eq. (1). In
Figs. 1 and 2 we show that our numerical results agree
perfectly with the GOE and GUE fluctuation behavior
predicted by Eq. (7) when (g)))1. This strongly sup-
ports the maximum-entropy hypothesis leading to Eq.
(7), and confirms the proposed relationship between
random-matrix theory and the universal conductance

Changing variables to X;
yields J([X;})in Eq. (3):

p([X;})=Q;, ~X, —X, ~PQ; p[ f(X;)],—

where P= 1 (2) for the time-reversal symmetric (asym-
metric) case. Without time-reversal symmetry, the pre-
vious argument applies with P complex symplectic, R
unitary symplectic, and dA anti-Hermitean. This dou-
bles the independent dA;~, and this causes each factor
[(k;+X; ') —(XJ.+XJ ')] to appear twice. Recently
Mellow, Pereyra, and Kumar' have arrived indepen-
dently at the same result for the J([X;}),for P= 1, using
a difl'erent approach.

The crucial new result in Eq. (7) is that the factor in
P ( [X;}) that determines the eigenvalue correlations,
H;&~ ~XI —

X~ ~ p, has exactly the same form as for a
GOE or GUE eigenvalue distribution and thus Imry's
conjecture is consistent with the symmetries of X. This
means that the MEH, Eq. (3), implies that the fluctua-
tion behavior of [X;} is identical to that of the GOE
(GUE). Hence, if the Ansatz is correct, the UCF are
another manifestation of the statistical behavior predict-
ed by random-matrix theory and observed in nuclear and
atomic level distributions.

However, Eq. (7) represents only an Ansatz for the
statistical behavior of the random-matrix ensembles gen-
erated by the standard microscopic models describing
quantum transport. It is only of great interest if, in fact,
those models generate distributions of this form We.
therefore tested the applicability of the Ansatz by com-
paring its statistical predictions with the behavior of an
ensemble of X matrices generated numerically for the
Anderson random tight-binding model. To compare our
numerical results for the statistics of [X;}with the known
statistical properties of the GOE and GUE, we must first
correct for a nonnegligible variation in the average spec-
tral density o(X). To do this we use the numerically
obtained o(X) to rescale the [X;] so as to measure their
fluctuations in units of the local eigenvalue spacing.
Equation (7) predicts that after this rescaling the [X;}
should exhibit GOE fluctuations in the absence of a
magnetic field, and GUE fluctuations in a field. There
are two commonly studied fluctuation measures for these
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FIG. 1. Probability density of nearest-neighbor eigenvalue
spacing for rescaled spectrum of A. Circles are numerical re-
sults with no magnetic field, squares with field; solid lines are
analytic results for GOE and GUE. Results are for square 2D
samples of side 40, disorder parameter W=l ((g)=10), en-
semble size 400.

'dk;, i =j =1,2, . . . , 2N,

[(~/). )'"—(~ /~ )'"]dA, ,

Since Q is positive symmetric symplectic, its eigenvalues fX;) are real and positive, and occur in inverse pairs. We
choose the ).; & 1 to be independent, and the conditions dA = —dA and [dA, J] =0 leave only N independent dA;~ in
Eq. (5). Collection of independent terms dM~J yields the measure

1V jv

p(dg) =IId&;(I —&; ')exp[ f(X—)]+[(z;+X; ') —(X, +X, ')]dA;, . (6)
i ] i&j
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tion, W(g), the one-parameter scaling hypothesis for
W(g) would be proven. ' Since the one-parameter scal-
ing hypothesis for W(g) has recently been challenged, '

this question deserves further study.
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FIG. 2. (A3(L)) as defined in text, determined numerically
without a field (circles) or with a field (lozenges) for same pa-
rameters as Fig. 1 ((g)=10). Solid lines are analytic GOE,
GUE results. Squares are data for (g)=1 (W=4), showing
significant deviation as discussed in text. Dashed line is Pois-
son result (h3(L)) =L/15 expected for uncorrelated spectrum.

fluctuations.
For (g) = I, when the system is becoming localized, we

find significant departures from the GOE result for
63(L). This raises two possibilities. Either the MEH
leading to Eq. (7) may be breaking down as the system
localizes, or the numerical rescaling procedure we have
used may be less accurate for less dense spectra.

Finally, we brie[ly comment that Eq. (7) provides a
natural framework for the scaling theory of localization,
since it factorizes p ( jX;j ), into a universal factor
describing eigenvalue fluctuations, and a factor which
determines the average spectral density tT(X) that con-
tains all information about the system parameters (ener-

gy, degree of disorder, sample dimensions). What is

needed to establish the validity of one-parameter scaling
from this point of view is to show that cr(A) is specified

by only one parameter for every set of system parame-
ters. If this is so, then p(+;j) is a one-parameter distri-
bution, and since it determines the probability distribu-
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