
VOLUME 59, NUMBER 21 PHYSICAL REVIEW LETTERS 23 NOVEMBER 1987

Generalized Cooperative-Ring-Exchange Theory of the Fractional Quantum Hall Eff'ect
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Through the calculations of the diagonal and ofI'-diagonal elements of the full N-particle density ma-
trix we show that all essential features of the Laughlin variational wave functions can be derived in a
generalized cooperative-ring-exchange theory of the fractional quantum Hall fluid.
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Although the Laughlin wave functions' are believed to
contain all essential physics of the fractional quantum
Hall eAect, the physical origin of the important correla-
tions that are built into the wave functions remains un-
clear. The success of Laughlin wave functions is due, on
the one hand, to their good short-range correlation
(good in the sense that they minimize the short-range
part of the electron-electron repulsion) and, on the other
hand, to their rigidity against long-wavelength density
fluctuations (incompressibility). In Laughlin's theory,
the analyticity constraints imposed by projection onto
the lowest Landau level imply that the long-wavelength
correlations are fixed by the short-distance behavior.

Recently, Kivelson et al. adopted a totally diA'erent

approach to the problem, which was later extended by
Baskaran. This approach focuses directly on the long-
distance correlations. The idea is to study the eff'ects of
a specific class of quantum fluctuations that are particu-
larly sensitive to small changes in the density, viz. the
cooperative-ring-exchange (CRE) processes. A CRE
event involves the cooperative tunneling of a set of elec-
trons from an initial metastable configuration to a final
configuration in which the "electron positions" are cycli-
cally permuted. (Since for any state

~
+) in the first

Landau manifold „(jz;j ~

4') =z,(jz;j
~
+), where

~
tz;j)„

is the coherent state where the electron guiding centers
are localized at [z;j and

~ [z;j)v, is the position eigenstate
where the electrons are localized at fz;j, we can use
"electron coordinates" and "guiding-center coordinates"
interchangeably. ) In the original CRE theory, 4s one
studied the cooperative tunneling of electrons around hy-
pothetical "backbone" configurations (Wigner crystal in
Ref. 4 and "incompressible liquid" in Ref. 5). In the
imaginary-time direction, the backbone configurations
are assumed either to be completely quasistatic, or to be
quasistatic within imaginary-time slices of width ro, and
completely uncorrelated from one such time slice to

another. Under these assumptions, it was argued that
because of the constructive interference between the
Aharonov-Bohm phases of the CRE processes, v=1/
(2n+ I) is more stable relative to all nearby densities.
Although the CRE theory is appealing, its relevance to
the real quantum Hall eAect can be questioned because
of the hypothesis of backbone configurations and the un-
realistic treatment of their temporal evolution. More-
over, even if one ignores the problem associated with the
backbone configurations, one still has to face the follow-
ing question: What is the connection between the CRE
theory and the Laughlin wave functions?

In this Letter we completely remove the backbone hy-
pothesis and show that the long-wavelength properties of
the Laughlin wave functions can be derived within a gen-
eralized CRE theory. In particular, we can show that
the sum of the probability amplitudes of all closed-loop
nearest-neighbor tunneling processes for a given electron
configuration jz;j determine the value of the diagonal
density-matrix element (DDME) corresponding to that
configuration. For example, at v = I/(2n+ I ) DDME
has its largest value for a perfect Wigner crystal with
lattice parameter a(v) =(4tr/J3v)'t [in units of the
magnetic length lo=(hc/eB) 't ], because all elementary
triangles enclose the right amount of magnetic flux and
hence all rings constructively interfere. For a general
liquidlike electron configuration, some plaquettes enclose
excessive flux (positive plaquettes), and some enclose
insufficient flux (negative plaquettes). If the positive and
negative plaquettes are bound closely together to form a
globally "neutral" system, a dominant fraction of the
tunneling rings still constructively interfere, and hence
the configuration has a DDME comparable with, though
somewhat less than, the Wigner crystal. On the other
hand, if a liquidlike configuration is composed of un-
correlated positive and negative plaquettes, almost all
ring exchanges destructively interfere, and hence the
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configuration has a vanishing DDME relative to that of
the Wigner crystal. If v deviates slightly from 1/(2n
+1), the Wigner crystal with lattice constant a(v) has a
negligible DDME because the elementary plaquette has
the wrong area, causing destructive interference between
rings of all sizes. Instead, configurations where the ex-
cess (or the deficit) density is accumulated as localized
defects such that all rings enclosing these defects have
their enclosed magnetic flux increased (or decreased) by
an integer multiple of the flux quantum have significant
DDME. What we are able to show is that the DDME
calculated according to the generalized CRE theory
agrees with that predicted by the Laughlin wave func-
tions. Moreover, by summing over all probability amp1i-

p({ I, {;J;o) =pe '+'e. ({ J)e.*({;I)

tudes of tunneling paths connecting different configura-
tions, we can even calculate the off-diagonal density-
matrix elements (ODME) and hence obtain phase
differences between eigenwave functions evaluated for
these configurations.

Our approach is based on an approximate evaluation
of the density matrix

p({., 1, {.,1;..) —=.,({.,l!. ""!{.,l)..
~here ! )As denotes a properly antisymmetrized state,
{z;[ and {z f are the initial and final electron configura-
tions, and ro is the cooperative tunneling time. The hope
is to demonstrate that for v= 1/(2n+1) (unless other-
wise mentioned we shall always assume the "magic"
filling factors through the paper),

=. '~ ~.({., 1)~.*({.,1)+ y Q g . '"'"~({.,'l;{R,, R,1)~*({.,f;{R,, R,1),
m=& J ~ RR.J J

where E, and @,({z;l) are exact eigenenergies and eigenwave functions, respectively. +0({z;))is the Laughlin ground-

state wave function, A is the average of the quasiparticle and quasihole gaps, %'({z;l;{R~,RJ[) are the Laughlin
quasiparticle-quasihole wave functions, where the quasiparticles are localized at {RJI and the quasiholes are localized at

{RJJ. Here we have made an approximation, viz. , that at temperature ro, the dominant contributions to the density

matrix come from the ground state and states composed of a gas of noninteracting Laughlin quasiparticles and

quasiholes.
To calculate the left-hand side of (1) we write down its path-integral representation,

D [z (r) l exp X(z(r) )dz, (2)

where JV is the normalization constant, P is a permuta-
tion, and

~(.(.))—= —, g Jzi
dt

'
z,

* + —,
' g V(z, —z, ).

dt

To make the computation tractable, we make the semi-
classical approximation. Terms in (2) have the final

electron configuration differing from the initial one by
some permutation P. The saddle-point paths under such
a boundary condition represent cooperative ring ex-
changes. Because we are restricted to a time interval of
order io, the CRE tunneling time, we do not have to
worry about the temporal repetitions of the ring ex-
changes. This simplifies the calculation considerably, be-
cause now we need only sum over all possible spatial
CRE s which occur in a time interval ~0. Since the CRE
processes that involve electrons tunneling through a dis-
tance larger (smaller) than a(v) have longer (shorter)
tunneling time, our calculations are most accurate for
those configurations where the distribution function of
the nearest-neighbor distance is sharply peaked at a(v).

For the DDME {z;j= {z J, we represent each CRE as
a directed closed-loop diagram. The graph rules are as
follows: (1) Draw the lattice (in general nonperiodic)

! defined by the initial (=final) electron configuration {z;I;
(2) draw all possible single-bond directed closed loops;
(3) associate a weight exp( —a;~. ) to every bond (ij ) on

the loop; and (4) associate a phase factor e —' to every
loop. Here a;z is the effective tunneling barrier between
sites i and j, 0 =2m(p/pp) + xS (the first term is the
Aharonov-Bohm phase factor and the second term comes
from the Fermi-Dirac statistics), and the sign is deter-
mined by the sense of the loop. Also p is the magnetic
flux enclosed by the loop, go =he/c is the flux quantum,
and 5 is the number of bonds in the loop. (We have fol-

lowed Ref. 4 and postulated the existence of a factor of
—1 from the fluctuation determinant of every loop. )
We identify the graph rules described above with those
of the loop expansion of a two-dimensional statistical-
mechanical model defined as follows:

p({;l,{z;l;ro)—=Zxi. ({z;J)e
(3)

dO;z, =„"Q ' +[1+2 " o (o, —o, +~„)],
l + EJ

where Fo({z;l,{z;[) is the contribution from processes
other than the CRE (basically, this is the electrostatic
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energy of the configuration [z;}), 8; is an angle variable defined at z;, and 6;J.——(2n/&'0)fj A dl+ ir, where A is the vec-
tor potential and the integral is performed along the saddle-point path. For a range of values for the parameter a,z, the
model defined in (3) exhibits a line of fixed points and is in the same universality class as the fully frustrated A'Ymod-
els. s Since tunneling between nonnearest-neighbor sites is suppressed by a large a;J, we restrict ourselves to nearest-
neighbor interactions only. By performing standard duality transformations one can show that

ZEY([z;}) ~ g & g (mR+fg ) exp —pg (mg+f~)' —K,ff g (mg+fg) ln
~
R —R '

~ (m~. +f„,)
(mRI R R~R'

(4)

where the [R} span the dual lattice of [z;}, the [mgj are integers, and f~ for the plaquette pg centered at R is defined
as

f~=(2 )
&ij) e I'R

Also, p (the chemical potential of mg s) and K,ff (the long-wavelength spin-stiff'ness constant) are both functions of
[a;~j. Since the effect of mz is to shift fz, and hence the magnetic flux, of pz by a quantized unit, we associate the
sum over [mR} with the sum over different quasiparticle and quasihole configurations in (1). This identificatioll is valid
so long as there is a well developed gap in the spectrum, so that only the ground state and few-quasiparticle states con-
tribute to p. In the Coulomb gas, this situation pertains for E,g greater than the critical value for the Kosterlitz-
ThouIess transition. For K,g less than the critical value, the sudden proliferation of free vortices signals the transition
to a compressible (gapless) state. As the result, we find that apart from some short-range terms [terms such as
Fo([z;j, [z;j ), whose value falls off faster than ln

~
z; —zj.

~
as the particles are brought apart],

ln
~
eo([z;j ) ~

'~ —pg (f& mg ) +—K,ff g (f& —m& ) ln
~
R —R '

~ (f~ m~ ),—

ln
~ e([z;};[R„Rj) I

~ pg (fii+mz mz) +Ketr g (fii+mz mii)» I R —R'I (f~ +m~
(s)

Here mg = —, S~(1+v ') —v ', with Sg being the number of sides of the plaquette centered at R; m~ = —1 if R =R
and m~ =1 if R =R,. Since fg =&~/&0+ —, Sii (p~ is the magnetic flux piercing through the plaquette P~), f~ —mg=v [vip'/pp ( 2 Sg —1)]. Because vp~/po is the total neutralizing-background charge contained in the plaquette
P~, and —, S~ —1 is the average number of electrons enclosed in P~, we recognize that (5) is nothing but the Laughlin
wave functions

ln~ +0([z;})
~

a: —
v& d rd r'Bp(r) ln~r —r'~ Sp(r'),

(6)
ln

~
+([z;j;[R,R })

~
~ —v„d rd r'[Bp(r)+pq&(r)]ln

~
r —r'~ [bp'(r')+pqz(r')],

with their short-wavelength (shorter than the mean interparticle spacing) plasma charge-density fluctuations 8p(r) in-
tegrated over. [In (6), pq~(r) is the plasma charge density produced by quasiparticles at [R j and quasiholes at [R j.]
As the result of this integration, the plasma temperature is renormalized, and the renormalized value (Kgff) is, in
general, diff'erent from the corresponding "bare" value v ' given by the Laughlin wave functions. '

For the ODDM, the initial and final electron coordinates in (1) are no longer the same. For simplicity, let us assume
z~~z~ and z; =z for all i &1. The graph rules for summing up the CRE's are the same as for the DDME, except that
(a) the lattice is now defined by [zI,z|,z2, . . . , z~}, (b) the allowed graphs now consist of open paths from z| to zl and
closed loops everywhere else, and (c) with the open path we associate a phase factor [exp(i2ir/po) fA. dl+ixS], where
S is the number of bonds (excluding the bond between z| and z|). These new rules are precisely the ones used to cal-
culate the two-point correlation functions for the model defined by (3). Therefore,

p([z } [z }'ro)=Z~i. (zl, z), z2, . . . , z~)e

~ dO)' dOi i(81 —8 )
Z~y (zl, z|,z2, . . . , z ) =J + e ' + [I+2e ' cos(0; —g. —Q; )],

275 i ] 275 &l

where the product is over i,j =1', 1, . . . , N and h.;z is defined as before except that 5&., is defined without the additional
n from the Fermi statistics. Following standard duality transformation, we can show that apart from some short-range
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terms

Zti. g ~ 'gmz+fz'exp —pg(mz+fa)' —&,s g (mz+fw) ln
I
R —R'1(mg, +fg, )

lmRI

xexp —t'g(m~+ —,
' S~)[e(z, —., ) —e(zi —.,)]

R

where S~ is the number of sides of the plaquette centered around R, zg =R +iR~, and

e(z —z') =tan '[(y —y')/(x —x')]

is the polar angle of z —z'. Following the analogy with (1) and (3), we again interpret the sum over [mz[ in (8) to be
the sum over diA'erent quasiparticle and quasihole configurations so that,

Imjln[+o(zi )+o (zi)]] = —ig( —,
' S~ —mg) [e(zi —z~) —e(zi —z~)],

R
(9)

Im(lnN'(z, ';[R„R,])+*(z,;JR„R ])])= —ig (mg —m)+ —,
' S~)[e(z, —z ) —e(z, —z„)].

Since mg —
—,
' Sg =v '( —,

' S~ —1), and —,
' S~ —1 is the

average number of electrons per elementary plaquette,
(9) implies that the phase difference between +o(zi,
z2, . . . , z~) and %'p(zi, zz, . . . , Z~) is equal to the phase
change of the wave function of a charged particle that
moves from z& to z& in the magnetic field produced by
solenoids located at [z;;i =2, . . . , N]. The flux going
through each solenoid is v Aux quanta. Similarly, the
change in phase of the excited-state wave functions is the
same as that of a charged particle that moves in the
magnetic field produced by solenoids located at z 2,

. . . ,z~ and R„R,. These features are again consistent
with the properties of the Laughlin wave functions. A
word of warning should be given here. Whereas for
some fixed configurations, e.g. , the Wigner crystal, the
model defined in (3) exhibits quasi long-range order in
spin-spin correlation, the reduced one-body density ma-
trix does not. This is because to calculate the reduced
density matrix we have to calculate the spin-spin correla-
tion function upon integration over the coordinates of the
N —

1 particles. Because of the phase oscillation, the
"annealing" destroys the quasi long-range order.

In summary, we have shown that the long-distance be-
haviors of the DDME and ODME are consequences of
interference eA'ects. This result therefore serves as an in-
dependent test for the validity of any proposed wave
functions for the fractional quantum Hall liquid.
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