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External Modulation of Rayleigh-Benard Convection
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We report thermal-convection experiments using helium I where the vertical temperature difference
has an externally imposed time dependence. Both positive and negative threshold shifts are observed de-
pending on the strength and rate of modulation, as well as a depression of the initial slope of the heat
transfer above threshold, in qualitative agreement with predictions of Ahlers, Hohenberg, and Liicke and
of Rosenblat and Herbert.

PACS numbers: 47.20.Bp, 44.25.+f, 47.25.Qv

There has been a growing interest recently in external-
ly modulated hydrodynamic systems, both theoretical-
ly

' and experimentally. ' These systems may exhibit
novel behavior in response to parametric forcing near a
point of instability. Many other nonlinear physical sys-
tems, including those of a mechanical or electrical na-
ture, likewise exhibit altered behavior when external pa-
rameters are varied appropriately. ' An example from
hydrodynamics is thermal convection between two hor-
izontal boundaries, where the driving force has an im-
posed time dependence due to temporal modulation of
the boundary temperatures. Depending on the relative
strength and rate of the forcing, predictions exist for a
variety of responses to the modulation. Among these are
the upward shift of the convective threshold compared to
the unmodulated problem' (reminiscent of the en-
hanced stability characteristics of the classical inverted
pendulum' ), as well as changes in the nonlinear heat
transport above threshold and in the nature of the bifur-
cation of the transition. Although there has been
much theoretical interest in this problem there is little
experimental data ' "available for comparison.

We report thermal-convection experiments involving
temporal variation of the temperature difference across a
layer of fluid contained in a cryogenic Rayleigh-Benard
cell of cylindrical geometry. Helium I was used as the
working fluid at an operating temperature of 2.63 K and
a Prandtl number et=0 49, wher. e tT=v/tc and v, tc are
respectively the kinematic viscosity and thermal
diff'usivity of the fluid. Our cell has a height d =0.0917
cm and a radius-to-height ratio of 8.82, with upper and
lower plates made of oxygen-free high-conductivity
copper and separated by a thin (0.015-cm thickness) cy-
lindrical stainless-steel wall. Two matched germanium
resistance thermometers embedded in the top and bot-
tom plates and configured as one arm of an ac bridge
measure the temperature difference h, T produced by sup-
plying heat to the bottom plate) by means of the off-
balance bridge voltage. The driving force for convection
is represented by the Rayleigh number NR, =gahTd /
vx, where g is the acceleration of gravity, and h, T is the
temperature difference across the layer of fluid of height
d and isobaric thermal expansion coefficient a. In addi-

r& dx/dt = o'[x(t) —y(t)], —

rt dy/dt = y(t)+ [r'(t) —z(t)]x(t),—

rt dz/dt = —b[z(t) —x(t)y(t)].

(la)

(lb)

(lc)

tion, the horizontally averaged heat transport across the
fluid is characterized by the Nusselt number NN„,
defined as the ratio of the measured effective thermal
conductance of the fluid to its value in the absence of
motion (molecular heat transport only), so that NN„& 1

implies convection.
A recent theoretical treatment of externally modulated

Rayleigh-Benard convection has been undertaken by
Ahlers, Hohenberg, and Liicke (AHL) on the basis of a
mode truncation of the Oberbeck-Boussinesq hydro-
dynamic equations, i.e., on a generalized version of the
Lorenz model, ' keeping only the lowest spatial Fourier
modes for the convective velocity and temperature,
which here will be represented by x(t) and y(t), respec-
tively. A second convective temperature mode z(t)
represents a spatial average of the temperature in the
horizontal plane, depending only on the vertical coordi-
nate, and is related to the Nusselt number. Using the
notation of AHL, for a sinusoidal modulation of the tem-
perature difference across the cell AT(t) =AT[1
+icos(tot)] we write the time-dependent relative Ray-
leigh number for a Boussinesq fluid as r(t) =ro
+icos(tot), where the Rayleigh number has been nor-
malized by its critical value in the absence of modulation
NR,",. h, T and ro are time-averaged quantities given by
hT=(hT(t)) and ro=(Na, (t))/NR, , where the angu-
lar brackets signify averaging over time, and 6'=roac h ~.
Times are nondimensionalized by the vertical thermal
diffusion time d /rc, so that, e g , to =to*.d ./tc, where co*

has dimensions of radians per second. Because oscillat-
ing temperatures at the boundaries give rise to "heat
waves, "which distort the conduction temperature profile
in the fluid from one which is simply linear in space, r(t)
is modified by the introduction of a new parameter
8'=rtt

~
d, '(to) ~, with 5'(co) being a frequency-dependent

amplitude defined by AHL (with a correction'6). The
Lorenz model appropriate to rigid horizontal boundaries
is then given by AHL:
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Here, b =2, r~ =(2n ) ', cr'=27a/14, and r'(t) is just
r(t) with 8 replaced by 8'.

Equations (1) describe a laterally infinite layer of fluid
and predict positive threshold shifts which approach a
maximum as co 0. To describe modulated convection
in a finite container, inhomogeneous forcing terms are
added to Eqs. (1), making the bifurcation imperfect. In
this case, as discussed by AHL, the threshold for convec-
tion is no longer uniquely defined; however, it is possible
to define an effective threshold as, say, the value of
e = NR, /NR; —1 for which the average amplitude of the
convective temperature mode (z (t)) exceeds 0.001.

The inhomogeneous term is added to Eq. (la) which
then reads

ri dx/dt = —o'[x(r) —y(r)]+ a'&(r), (la')

where g(t) is the forcing term given in Eq. (D15) by
AHL. In terms of the various modulation parameters
g(t) can be written as

((t) =fro8[Im y(ro') cos(rot ) —Rey(ro) sin(cot )],

where y(co) is defined in their Eq. (Dlg) and behaves
like

~
y(ro)

~ 1, y=y(real) as ro 0 and
~ y(ro)

~

0 as co ~, and the forcing strength f is taken to be
an adjustable constant which is fitted to the experiment.
At low frequencies of modulation the forcing induces
strong convective motions at values of ro below the
threshold predicted by the homogeneous equations.

In a diA'erent way, Rosenblat and Herbert' (RH) also
find apparent destabilization at low frequencies through
an amplitude criterion when the horizontal boundaries
are stress-free. Such a criterion is motivated by con-
sideration of the validity of a linear stability analysis at
low frequencies, where disturbance amplitudes may have
time to grow to sufficiently large values during the unsta-
ble portion of the modulation cycle that nonlinear effects
become significant. By this criterion, flows are con-
sidered stable if the amplitude of the least stable distur-
bance mode grows no more than a factor of I times
some initial value over a complete cycle, corresponding
to a value of M =log(m) which RH take to be of order
1, but otherwise arbitrary. The envelope of the ampli-
tude-criterion results, assumed to be valid at low fre-
quencies, with thresholds predicted by standard linear
stability theories [e.g. , the homogeneous Eqs. (1) ap-
propriate for free boundaries], which should be valid at
higher frequencies, produces a finite optimum frequency
for which the stabilization is maximum (rather than the
limiting value co 0). As noted by RH, this is in quali-
tative agreement with the threshold behavior of the
analogous Couette- Taylor experiments of Donnelly. '

RH found broad agreement with the Couette results by
choosing M =2.25, and we note that for 6 of order unity
and o.=0.49, this choice of M predicts an optimum fre-
quency of m=7, which compares well with our observa-
tion of an optimum frequency near co =10, for 6,—1.

Two different methods of producing time-varying tem-
peratures were used for this experiment. For low fre-
quencies, the method used in previous studies ' of
sinusoidally heating the bottom plate proved adequate.
Here, a modulated heating current Q(r) =Qp[1+dg
xcos(rot)] is applied to the lower plate while the upper
plate has its temperature controlled to be constant. If we
take into account the finite heat capacities of the lower
plate and fluid for our cell, as well as the fact that cool-
ing can only be accomplished by conduction through the
fluid and side walls, the temperature amplitude yielded
for such a modulation decreases monotonically with fre-
quency from a maximum of h, =l at co=0 to less that
h, =0.2 for m —10. To obtain large amplitudes at higher
frequencies, then, it is necessary to employ a novel tech-
nique which involved heating and cooling the top plate of
our cell, which is in contact with a colder superfluid heli-
um bath. Specifically, the modulation is accomplished
by our superimposing a time-varying electrical current
on the output of a feedback circuit used to regulate the
top-plate temperature, so that the temperature can be
made to oscillate about a controlled mean (see Ref. 11).
To obtain a nonzero mean temperature difference across
the cell, a steady heat Q is applied to the bottom plate
simultaneously with the top-plate modulation, where the
oscillation amplitude of the top-plate temperature can be
made to increase linearly with Q, thus fixing 5 in the
conductive regime. A waiting time is then initiated be-
fore we collect data to allow the system to adjust to the
modulation; e.g. , at m —10 this time was typically 25-30
modulation cycles, corresponding to 15-20 characteristic
vertical thermal diffusion times of the fluid. The attain-
ment of steady-state conditions is easily confirmed by our
monitoring AT(t) on an external recording device.

The results from a modulation run are interpreted in

much the same manner as for standard convection, i.e. ,

by our first converting the measured data [(Q(t)),
(h, T(t))] into Nusselt-number and Rayleigh-number
pairs and then plotting NN„—1 vs e, where @=NR,/
Ng,",—1 and NN„and NR, are to be understood to be
averages over a modulation cycle. We determine the
critical value of the Rayleigh number by making a linear
least-squares fit of lines to the data above (NN„& 1) and
below (NN„=1) threshold and finding their point of in-

tersection, excluding from the fit the "rounded" points in

the immediate vicinity of the onset, as well as those
points in the "saturated" region we11 above onset where
the heat-transfer slope shows negative curvature.

Figure 1 shows data obtained for 1ow frequencies, with
use of mainly bottom-plate modulation with fixed
h, g =0.98, where 0.5 & h. & 1. It is clear that the stabili-
zation predicted by the homogeneous Eqs. (1) for the
ideal layer is not realized experimentally, with apparent
destabilization of up to 40%. On the other hand, for
comparable amplitudes and higher frequencies, which re-
quired top-plate modulation, this stabilization is readily
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FIG. 1. Low-frequency modulation. Values of the frequen-
cy m and amplitude 6 are as follows: crosses, co =0.222,

0.98; filled triangles, co 0.444, 5=0.92; open lozenges,
m 0.667, h, 0.90; open triangles, m=0. 889, h, =0.81; filled
circles, co =1.11, h, =0 75; open squares, co =1.33, h, =0 69;
filled lozenges, co = 1.78, 5 0.58; open circles, co =3.33,

0.68; filled squares, co=4.44, h, =0.68. The solid lines are
linear least-squares fits to the data above and below the con-
vective threshold.
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apparent as seen in Fig. 2(a), where we present data for
co=10.7. In Fig. 2(b), these data are compared to pre-
dictions for the ideal layer, where the convective thresh-
olds are plotted against 8", =(1+e, )

~

5'(ni) ~. Also
shown (dashed line) are the effective thresholds e, =e,'
[(z(t)) =0.001] resulting from integrating Eqs. (1) with
the inhomogeneous forcing term and a forcing strength

f=0.0004. Specifically, an integrating step size ht
(min(0. 02, ir/16') was used with initial values x=y
=z =0. In all integrations, z(t) was monitored graphi-
cally to verify the attainment of steady conditions.

It is clear from Fig. 2(b) that the predictions for the
ideal layer, and the eA'ective threshold behavior resulting
from inclusion of the inhomogeneous forcing term in

Eqs. (1), are very close to one another for a forcing
strength f=0.0004. For lower-frequency modulation,
however, the eA'ective thresholds predicted for this forc-
ing, as well as the experimental results, diff'er substan-
tially from the ideal behavior, which predicts increasing
stabilization as co 0. This is evident in Fig. 3, which
shows data obtained over the frequency and amplitude
ranges 0.222~ co~ 24.4, and 0.5 &h, ~ 1, together with
the eAective thresholds derived from integration of the
inhomogeneous Eqs. (1) with f=0.0004. At each ni the
value of h, matches that of the experiment and the
theoretical points are connected by a dashed line as a
guide to the eye. Also included in the plot are results de-
rived from the amplitude criterion of RH with M=2.25,
similarly matched in h, . Both methods of parametrizing
the problem appear to provide a good qualitative descrip-
tion of our results, with only a few exceptions.
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(1+e, ) z {(u)
FIG. 2. Moderately high-frequency modulation: co=10.7.

(a) Open circles, 5 =0; filled circles, 6 =0.30; triangles,
h, =0.45; squares, h, =0.68; lozenges, h, =0.76. The data were
obtained for a top-plate modulation. The lines represent fits
to the data as in Fig. 1. (b) Convective threshold E, vs
b„'=(I+a„)~A'(co)

~
for ai=10.7. Squares are experimental

values [see (a)]. The solid line represents stability results for
the ideal system [Eqs. (1)]. The dashed line is also obtained
from Eqs. (1) but with forcing (la') and a forcing strength

f=4x10

Finally, we mention that the apparently systematic
reduction in the initial slope of the heat transfer above
threshold [see Fig. 2(a)], as the relative amplitude 4 is
increased, is also predicted by the model of AHL. While
the qualitative trend is correct, the experimental slopes
appear to be smaller than the values suggested by the
model.

Further details of the experiment as well as results of
modulation with two commensurate and incommensurate
frequencies and with broad-band noise will be reported
elsewhere. '
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FIG. 3. e,/6, as a function of modulation frequency for
0.5 & 6 ~ 1. Triangles are experimental data. Circles result
from an integration of Eqs. (1) with the inhomogeneous forc-
ing term and a forcing strength f=4 x 10 . Squares
represent the threshold according to the amplitude criterion
[Eqs. (5.17) and (5.18) of Ref. 1 with M=2. 25]. At each
value of co the theoretical points (circles and squares) have
been calculated with use of the value of 5, corresponding to the
experimental point (triangle) at that co. The dashed line joins
circles [Eqs. (1)] as a guide to the eye.
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