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Understanding Electroweak Couplings of the Pion as a qq Composite
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Three basic pionic amplitudes f,+, F, (for n yy), and F3, (for ny nn) are calculated in a QCD-
oriented Bethe-Salpeter model of qq hadrons which fits the spectra of all quarkonia. The results,

f,+ =157 MeV (experiment, 135), I (n yy) =8.03 eV (7.9), and F3 =12.7 GeV (13+'2), ob-

tained with no free parameters, agree with the data and with the Wess-Zumino-Witten theory.

PACS numbers: 13.40.Hq, 11.10.St, 12.40.Aa, 13.60.—r

While a composite (qq, qqq) hadron is natural in a
QCD picture, the pion seems to stand apart, as testified

by the elegance of chiral-anomaly theories' character-
ized by a dimensional parameter f governing the in-

teractions of an elementary pion field. In particular, the
Wess-Zumino-Witten theory is consistent with the
low-energy limit of QCD, with testable predictions such
as the low-energy theorem ef F3,=F, connecting the
amplitudes for z ll, z yy, and y 3n, as well as
other types of predictions. A recent measurement of
the y 3n amplitude shows good agreement with
this prediction, thus apparently vindicating the Wess-
Zumino-Witten theory with SU(3) color. On the oth-
er hand, the theory in its present "eAective" form does
not have a mechanism for the pion's response to a high-

energy probe which should reveal its qq structure
through appropriate processes (e.g. , tt+A pp+X,
e+e tr+X, . . . ). Fuller information, all the way
from low to high energies, is more naturally contained in

the pion wave function.
The purpose of this Letter is to present the results of

this alternative "wave-function" point of view for the
pion, with respect to quantities f, F, and F3, with use
of a QCD-oriented Bethe-Salpeter (BS) model of con-
finement ' for all qq hadrons (pion included). The re-
sults are not only consistent with the low-energy theorem
noted above, but indeed the calculated value of F3 at
12.7 GeV and the tr 2y width (F„M /64rc) at 8.03
eV are in excellent agreement with the corresponding
measured values 13~ 2 and 7.9 eV, " respectively,
while the quantity f(+) =J2f at 157 MeV is only 18%
higher than its experimental value of 135 MeV, all with

no free parameters beyond the three basic constants of
the model (coo, Co, mv) already determined by the had-
ron spectra. ' In these agreements the structure of the
pion-quark vertex function (to be described below) has
proved crucial. Though not the subject of this paper, we
note for completeness that equally good fits have been
obtained for the pion structure function' (via a Drell-
Yan process) and the corresponding fragmentation func-
tion'2 (via e+e ~ tr+A') as possible high-energy tests
of the same vertex function.

Pion quark vertex functio-n Before presenting .—the

results we summarize the essential details of a BS model
for vector confinement with a harmonic-oscillator shape
which works on a two-tier basis: (1) three-dimensional
(null-plane) formulation ' for making contact' with
the data on hadron mass spectra and (2) a prior recon-
struction of the four dimensio-nal BS wave functions for
the evaluation of various transition amplitudes. The first
step suppresses the role of virtual qq, etc. , effects (alter-
natively, that of higher Fock-space amplitudes' ) on the
spectral calculations, a procedure justified a fortiori
from the excellent fits to the data on all quarkonia, light
and heavy. ' The second step restores these eAects on
the transition amplitudes perturbatively via 4D Feynman
diagrams. Since the initial formulation, the model
has undergone two refinements: First, a Lorentz-
invariant generalization of the harmonic kernel now per-
mits a mathematically covariant formulation of the 3D
BS equation in null-plane variables, the longitudinal
component 8 3 of any three-vector A reading as
A 3 A +M/P+ (P„=hadron four-momentum), so that
(over and above the inclusion of virtual qq, etc. , eff'ects)
the reconstructed 4D wave function is now valid for
hadrons in arbitrary motion. Secondly, certain physical
shortcomings of the earlier formulation have been over-
come' through (i) the Ansatz cozz=wmqcooa, for the
spring constant

cozen
(coo =universal constant for all

ffavors) and (ii) the introduction of an additive universal
constant Co (which now gives correct zero-point ener-
gies). Details are given in Ref. 10 which finds excellent
fits to qq, Qq, and Qg spectra with

W(pi, p2) =i SF(pi)I (q)SF( —p, ),

I (q) =N ysD+ (q)+/2tri. —

(2)

The crucial quantity is the normalized xqq vertex func-
tion I (q), which is a product of the null-plane-
approximation denominator function D+ and wave func-

coo =158 MeV, Co =0.296, rnq =270 MeV,

predicting, among other things, the pion mass at 163.1

MeV. For the present calculation of pionic transition
amplitudes the structure of the 4D pion wave function
is
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tion @, together with an overall BS normalizer N calculated in the standard manner. Now,

D+ =2P+(q&+mq —
—,
' M )+2P q+,

where

P =p]+p2, 2q =p& p2, P+P —=M .

The structure of @, and hence of N, depends on the on- or oA-shell character of the associated quark momenta
(p|rp2). For both pi and p2 on shell, we have '

cb=e&p[ —
& P (qi+M q+P+ )],

(4 3P2) 3/4P N & M(m 2+ & P2+ 2 M2) —1/2

p4=2ro02mqMa, y, y =1+2ruoa /Mmz —4Coa, mq/M,

a, = —,", ~[in(4m,2/~2)]-', ~=2SOMev.

On the other hand if both pl and p2 are off shell, the quantity q+M /P+ in the exponent of (5) must be replaced by
(p, =o)

q+M'P+ ' —q+2( m'+q )~/p&+p2+

so that the oA-shell wave function @ reads

e =exp[ ——,
' P2(q'+x2mq2)(I —x') '],

x =2q+P+ ',

(lo)

which is consistent with the general form of f(q +m~/(I —x )) employed by other authors. ' ' The corresponding
normalizer % in this model is given by

+]
(87c4P2) I/2P~N = dx(1 —x2) [P2(l —x2)+m 2+ 1 M2(1+x 2)]earp[ m2x2P —2(1 x2) —1] (»)

z ll and x yy couplings. —We follow the procedure for calculating the matrix elements for these transition am-
plitudes, but attuned to the null-plane-approximation covariant vertex function as summarized above. For both these
cases [Figs. 1(a)-1(c)]the off-shell quantities N and N, Eqs. (10) and (11),are appropriate. The amplitude f +, Fig.
1(a), is defined as

f+P„=J3i(2rr) &t d q Tr(%'y„y5)

which, after integration over dq in the standard manner, ' yields
r +1

f+ =2&3m~N P+„d qi — dx@

(12)

P

(b)

2

8 CI+Q

-p ~—K„

(c)

P'

P

FIG. l. (a) x ll diagram. (b), (c) xo yy diagrams. (d), (e), (f) xy mm diagrams.
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leading, after necessary substitutions, to the value

f+ =J2f =157 MeV,

while experiment gives 135 MeV. Next, the invariant amplitude for z yy is given by

A(n "yy) =6 ' e Tr„l d q[@(pi,p2)iy e ' sF(q —Q)iy e +(1 2)],

(i4)

(is)

where Q =ki —k2, and the second term interchanges the
two photons [Figs. 1(b) and 1(c)]. Its general structure
defines the yy form factor F of Refs. 4 and 6 through
the identification

W(& yy)=F. eu.~ 'u & P~Q
0 (]) (2) (16)

F ="(-')'" "d'q ' + (i7)
h&h2 2«

Ai ~=m~+pi 2, d3—=m~+(q+Q) .

The QED gauge invariance of (16) is explicit. A
straightforward but lengthy integration over dq gives
rise to the following structure:

y 3~ coupling. —This process is governed by Figs.
1(d)-1(f) corresponding to the three possible ways in

v hich the photon can interact with the quark lines form-
ing the inner triangle, together with three more diagrams
corresponding to the loop direction reversed. These per-
mutations formally ensure QED gauge invariance for the
entire y 3n amplitude in the standard fashion. ' We
use the same procedure for the color and isospin factors
as in Ref. 8, and the same notation for the four-momenta
of the quarks (pi,pi, pi ), antiquarks (pq, p2, p2'), pions
(P, P', P ), and photon (k). The connections are illus-
trated for Fig. 1(d) as

te

X= —,
'

mqP

r
& 1/2

F =4xe N (6) 1 ——dl
p]2= 2 P ~q, p12 2 P'~q

z P ~q, k+p& —p],pi — p2,

P2 =P2=P2+P, P+k =P'+P".
(2i)

which yields F =25.64 MeV ' and a z yy width

I (zr yy) =F M /64gr =8.03 eV (20)

with use of the observed mass M=135 for z, while ex-
periment" gives 7.9 eV.

As to the actual dynamics for the various vertex func-
tions, it is important to recognize that this highly peri-
pheral yn xx process calls for the on shell form -(S)
for + at each zqq vertex, with the corresponding norm
N-, Eq. (6), to be substituted in Eq. (3) for each pion.
The resultant invariant amplitude for Fig. 1(d) is

A i
= (2z) si6 3l N N' N td q D-+D-+D-+@&0'@"(TR) i,

(TR ) i
=Tr [y5SF (p i )i y eSF (p i ) y5SF (p i ) y5SF ( p 2) ],

(22)

(23)

with similar expressions for Figs. 1(e) and 1(f), suffixed by indices and 2 and 3, respectively. (Three more terms with
the loop direction reversed give merely a factor of 2 for this process. ) As in the xpyy case the amplitude '6 F3 is
defined through

A(y3z) =2(Ai+Ap+A3)=F3 e„,p e„P,PpP",

where F3 can be identified, after a little algebra, as

F3~= (2n) i '8em~N N' N —t d -q D—+D+D+NN + (d ih2) ' [(Aih2) '+ (hzb i ) '+ (82 8 i ) '],

(24)

(2s)

with the 6 s defined as in Eq. (18) with four-momenta indicated in Figs. 1(d)-1(f). Again, the QED gauge invariance
of Eq. (24) is explicit as expected. ' The q —-pole integration is greatly simplified under the kinematical conditions6
of the problem which justifies our taking the final pions (p', p") almost at rest in the c.m. frame of P and k. As a result
the overall four-momentum condition (21) simplifies to

P+ =kp+k =P++P+ =2M, k+ =kp+( k) =0, (26)

taking account of the near mass-shell condition (kp=k) for the photon. The rest of the procedure is straightforward
though lengthy. The final result simplifies to

F = —"e(m/P')' (m /J3)exp[ ——'M P ](m + —'P + —'M )

=12.69 GeV

(27)

(2g)
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2as mq
2

Z;, =1+ ln3' X2

I ——'M m ——'M
2 q 4

ln
mq 4 Af x2

(29)

where X is the ir frequency. Note that the correction
vanishes exactly in the limit M 0 (which corresponds
to a point-pion coupling to 2y via the anomaly term), a
result not inconsistent with the Adler-Bardeen theorem'
(which applies to this limit). For a Pnite pion mass, a
natural ir cutoA' value is X =M, which gives Z = 1

+0.02a, only, so that our basic result, Eq. (20), remains
almost unaffected by such a multiplicative Z correction.

In conclusion, our BS model for qq hadrons, apart
from giving good fits to the hadron spectra, ' predicts
pionic transition amplitudes consistent with the data "
and with the chiral pion limit. ' In addition, this com-
posite model also happens to provide a parameter-free
handle on certain high-energy processes probing the pion

qq structure, again in good agreement with the data. '

A more detailed report, including the results on a few

with use again of the values listed in Eq. (1); experi-
ment gives 13 ~ 0.9 ~ 1.3 GeV . We thus have the
results on three basic quantities (f,F,F3 ) in terms of a
composite (qq) pion model, all in good agreement with
the data, but for the possibility of higher-order correc-
tions which might vitiate these agreements. ' We have
checked the effect of second-order gluonic corrections to
the tr~ yy amplitude, Figs. 1(b) and 1(c), in the follow-

ing manner: There are three self-energy corrections, one
on each internal quark line; t~o "vertex" insertions at
the photon vertices; and one at the nqq vertex. All these
corrections are necessary for a consistent treatment of
the infrared (ir) divergences inherent in the gluon inser-
tions. If we keep track of the main logarithmic (ir)
terms and work entirely in the Landau gauge, the resul-
tant correction to the tr yy amplitude, Eq. (15), works
out as an overall multiplicative factor:

other allied amplitudes, is in preparation.
We are grateful to Rahul Sinha for crucial help with

the kinematics of the peripheral ny nz process.
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