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Electronic Structure of the Neutral Manganese Acceptor in Gallium Arsenide
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A new manganese-related isotropic electron-spin-resonance signal at g=2.77 has been observed in
GaAs. It is shown to arise from the neutral Mn acceptor, Mn . The analysis gives an answer to the
longstanding question of whether the structure of Mn corresponds to 3d or to 3d +hole. The data
clearly favor the latter case, thus revealing that Mn is an exception within the 3d acceptor family in
GaAs.

PACS numbers: 71.55.Eq, 61.70.Ey, 76.30.Fc

Within the family of 3d transition-metal acceptors in

gallium arsenide (GaAs), the manganese acceptor be-
haves unusually. This was evidenced already by the ear-
ly observation that in its infrared absorption spectrum,
just shortly before the onset of photoionization into the
valence band, sharp spectral lines appear. ' These result
from optical transitions into shallow bound excited
states, as 2Psi2(I s) and 2Pst2(17), which are well ac-
counted for by efI'ective-mass theory. From these data,
the ionization energy of the neutral manganese acceptor
can be determined with spectroscopic precision, at
E„,+113.0 meV. This value is the smallest one ob-
served among 3d acceptors in GaAs; on the other hand,
this value greatly exceeds the one predicted by efI'ective-
mass theory, E„,+26 meV. The above-mentioned ab-
sorption spectrum, ' as well as the donor-acceptor-type
luminescence spectrum, suggests that Mn behaves as a
conventional acceptor in GaAs. On the other hand,
magnetic susceptibility and Faraday-rotation measure-
ments were interpreted as evidence that Mn is a typical
3d acceptor with the hole bound in the 3d shell. Thus
the situation is controversial and the question arises how
the electronic ground state of the neutral manganese ac-
ceptor in GaAs is properly described. According to the
above mentioned results, the following two possibilities
exist ':

(1) In a tight-binding case, the acceptor hole enters
the 3d shell of the 2 core, resulting in a 3d
configuration, then possibly undergoing a (static) Jahn-
Teller distortion as observed for Cr(3d ) in GaAs' and
other tetrahedrally coordinated semiconductors.

(2) Alternatively, the hole may be energetically
favored by staying in a delocalized S3y2 orbit around the

(3d ) acceptor core. In this case the manganese ac-
ceptor ground state will be drastically modified, by cou-
pling between the spin of the delocalized hole, j = 2, and
that of the A (3d ) core, S = —', .

In this Letter we present a new electron-spin reso-
nance (ESR) signal in GaAs:Mn which is shown to arise

from a cubic Mn-related spin-1 center. The ground-
state g factors of the cubic Mn3+(3d ) ion in tetrahe-
dral symmetry are analyzed and are found to be incom-
patible with the experimental value of the new Mn sig-
nal. The g factor of a loosely bound hole, exchange cou-
pled to the A (3d ) acceptor core, is calculated and is
found to be in line with experiment. This analysis
strongly supports model (2) and shows that Mn is an ex-
ception within the 3d acceptor family in GaAs.

Most samples used in this study were cut from a
GaAs:Mn ingot doped in the melt. It was pulled from a
pyrolytic BN crucible by the liquid-encapsulation Czo-
chralski technique. Secondary-ion mass spectroscopy
gave a total Mn concentration of 1.1&10' cm . Hall
measurements showed that the material is p type with a
room-temperature hole concentration of 4.5 x10' cm
The ESR spectra were recorded at 9.4 GHz and at 35
GHz.

Figure 1 shows the 4.2-K ESR spectrum of GaAs:Mn.
Three groups of lines centered around g =2.00, g =2.77,
and g=5.72 are evident. The set of lines at g=2.00 is
identified as the well-known"' AM =1 transition of the
ionized Mn acceptor 2, Mn(3d ). It is well visible
also at temperatures above 20 K. In contrast, the lines
near g =5.72 and g=2.77 disappear between 10 and 11
K. Note that the former line lies close to the half-field
position of the latter one, thus suggesting that they cor-
respond to AM=2 and 6M=1 transitions of a spin-1
state, respectively. The two lines are isotropic in position
indicative of a center with cubic symmetry and excluding
a possible static Jahn-Teller distortion.

The partially resolved Mn (I= —', ) hyperfine struc-
ture confirms that the center is due to manganese. For
reasons to be discussed below it is assigned to the isolat-
ed, neutral Mn acceptor 2 . Although the position of
the g=2.77 line is isotropic at 9.4 and 35 GHz, its
peak-to-peak width AH changes significantly with mag-
netic field orientation. For Hll(100) the width has a
minimum, AH = 440 G, while for Hll(111) it has a max-
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FIG. 2. Crystal-field ground state of Mn(3d ) in Td sym-
metry and its splitting by first- and second-order spin-orbit in-
teraction. Note that the model does not account for the Mn
ESR.
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FIG. l. ESR spectrum of p-type GaAs:Mn showing signals
due to the neutral (Ao) and ionized (A ) manganese accep-
tor.
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imum, hH =670 G. Such an orientation dependence of
the linewidth has also been observed for the shallow bo-
ron acceptor in Si. '

Preliminary ESR measurements under externally ap-
plied uniaxial stress reveal that the 2, 5M=1 line
broadens rapidly under external stress in contrast to the
other lines in Fig. 1. A clear-cut splitting has not yet
been resolved, possibly because of stress inhomogeneities.
The stress response of the 2, 6M =1 line and the tem-
perature dependence of its intensity, as well as its large
g-shift, hg=g —2=0.77, strongly indicate that a state
with nonzero orbital angular momentum is involved.

We have already noted that the g=5.72 and g=2.77
signals in Fig. 1 result from 6M=2 and AM=1 transi-
tions of an eff'ective J=1 state belonging to a cubic Mn
center with orbital angular momentum in its ground
state. Since the ESR of Mn(3d ) is well known, "' it
is natural to assign the new signals in p-GaAs:Mn to the
neutral Mn acceptor state MnP, . It is now shown that
these signals cannot be understood within model (1) but
can be accounted for within model (2).

For model (1), i.e. , Mn(3d ), the splitting of the Tz
(D) crystal-field ground state by first- and second-order
spin-orbit interaction is shown in Fig. 2. ' It is seen that
a T~ and a T2 triplet lie above the singlet A~ ground
state. 2 priori it cannot be excluded that the Mn reso-

nances result from one of these triplet states. The ener-
getic positions of T~ and T2 above A ~ have been calcu-
lated following the procedure exemplified for Cr(3d ) in

II~-VI compounds. ' ' With use of reasonable esti-
mates for the crystal-field parameter the spin-orbit and
spin-spin coupling constants of Mn(3d ) in GaAs, we
find that T ~ and T2 lie 13 and 23 cm ' above 2 ~, re-
spectively. This result remains unaN'ected if a dynamic
Jahn-Teller effect were operative since such an eA'ect

would quench the first-order but not the second-order
spin-orbit interaction. ' Thus T~ and T2 are depopulat-
ed at 4.2 K and ESR due to these states should not
occur. In addition the g factors of T~ and T2 are incom-
patible with the measured g value of 2.77. They are
given by lg(T|) I

= —,
'

gJ 3 and g(Tz) = —,
'

gj 3 where

gj i = —,
' (4 —k) is the Lande g factor of the I=3 spin-

orbit level' in Fig. 2. The orbital reduction factor k
could contain contributions from covalency eA'ects and
from a possible dynamic Jahn-Teller eA'ect. It could
therefore range between = 1 and =0. Correspondingly,
—,
' (g(T|) ~ 2 and —,

' (g(Tz) ~ —,', and this is seen to
be incompatible with the experimental g value.

On the other hand, for model (2) exchange coupling,
eS. j, of the delocalized hole, j= —, , with the ionized ac-
ceptor core, 5= 2, results in the sublevels J=S+j=1,
2, 3, 4, being energetically located at 0, 2t. , 5t. , and 9e,
respectively. Thus a J=1 ground state is obtained if an-
tiferromagnetic coupling (e)0) of the hole with the 3d
acceptor core is assumed. Corresponding eigenvectors of
the 1=1 state spanned in a

I ms, ml) basis, are calculat-
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From these wave functions eigenvalues of the Zeeman operator appropriate,

gSpBH S+gtpBH j +g2pB(Hj, '+H~j~'+ Hj, '), (2)

are obtained, the isotropic g factor being

(3)

The g factor of the 3d manganese acceptor core is

known from electron-spin resonance: g~ =2.003."'

Representative values for g~ and g2 of holes bound at ac-
ceptors, as carbon and tin, have been inferred from Zee-
man studies of acceptor-bound excitons. ' For the deep
acceptor tin in GaAs, E~ =E„,+167 meV, bound-hole g'
values of g~ =+0.78 and g2 = —0.07 have been quot-
ed, ' If we adopt these values for GaAs:Mn a g factor of
gJ=~ =3.0 is then predicted from Eq. (3) for the neutral
manganese acceptor in GaAs. This value is not too far
from the one determined by ESR, g =2.77, thus clearly
favoring model (2).

It is interesting to note that in a magnetic field the
hole spin j orients opposite to that of the ionized-
acceptor core, S, since, e.g. , (+ 1

~ S,
~
+ 1) = + —, and

(+1 ~j, ~
+1)= ——,'. This fact apparently accounts for

the sign reversal of circular polarization of luminescent
donor-acceptor recombination in GaAs:Mn, as compared
to GaAs:Zn, which was observed by Karlik et al.

In the ESR spectra Mn nuclear (I= —', ) hyperfine
sextet splittings are apparent; see Fig. 1. That of the

state, 52x10 cm ', agrees with the value report-
ed previously. "' Mn hyperfine splitting, 84x10
cm ', of the 2 state is only resolved for the AM=2
transition (see Fig. 1) which is less broadened by random
crystalline strains than the hM = 1 transitions. This
value is close to the Mn hyperfine splitting expected
from Eqs. (1) for the contribution of the 3d core:

4 x52x10 cm ' =91x10 cm
The fact that ESR of a neutral acceptor is observed

without application of external uniaxial stress is remark-
able in itself. However, for GaAs:Mn the acceptor's
ground-state wave functions, Eqs. (1), are a mixture of
stress-insensitive spin-only m~ states and highly stress-
sensitive orbital m~ states. The contribution of the latter
to the ESR linewidth is strongly reduced for GaAs:Mn:
For instance, for stress along the z axis, the splitting of
the J=1 state is proportional to (+ 1 ~j, ~

~ 1)
—(0~j, ~

0) =,'0, being only 15% that of a pure mj
state, &~ 2 lj'I ~ 2) —&~ 2 lj'I ~ 2)=2.

An important question which remains to be answered
concerns the magnitude of the exchange coupling |.S j.
An estimate can be inferred from a pronounced inelastic
phonon scattering observed in p-GaAs:Mn at low tem-
peratures, by thermal conductivity ' and ultrasonic ab-
sorption measurements. The data reveal existence of
an excited level, at 2- 3 me V, which may well be
identified with the first excited state, at 8'J=2=2e, of
the neutral manganese acceptor. Although rather small,
these energies, 2- 3 meV, corresponding to 480-720

GHz, still greatly exceed those of the microwave quanta
in our ESR experiments. This accounts for practically
identical g factors observed at 9 and 35 GHz. The excit-
ed level may also cause an Orbach-type relaxation which
could explain the disappearance of the A ESR lines
above 11 K.

Attention should also be drawn to measurements of
the static paramagnetic susceptibility as reported by An-
drianov and co-workers ' for p-GaAs: Mn. From their
data we obtain for the efI'ective number of Bohr magne-
tons p,~=3.9+ 0. 1 for the neutral manganese acceptor.
This value is in good agreement with the one predicted
by ESR, p, a =gj[J(J+ I)] ' =3.92, for a J =1 ground
state with gJ =2.77. Van Vleck-type paramagnetism,
arising from admixture of J =2 wave functions into the
J=1 ground state, is also evident; this can be exploited
for obtaining an independent estimate for the position of
the J=2 level, as will be reported elsewhere. It must
Anally be mentioned that Masterov et al. have ob-
served an ESR spectrum for p-GaAs:Mn in which, apart
from A (3d )-state ESR signals, the AM =2 transition
of the A state is clearly apparent whereas the AM=1
transition is not visible. This indicates severe strains to
be present in their sample which can broaden the hM = 1

transition beyond detection. Obviously, an assignment
of the ESR signal to a neutral manganese interstitial
must be discarded.

In conclusion, we have presented strong evidence that
the electronic ground state of the neutral manganese ac-
ceptor in GaAs is formed by a delocalized hole weakly
coupled to the A (3d ) acceptor core—and not to a
tight-binding 3d configuration. Thus manganese in

GaAs, possibly also in InP and GaP, appears to be a
rather anomalous member of the 3d-transition metal
family in compound and elemental semiconductors.
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