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A simple heuristic proof of the Nielsen-Ninomaya theorem is given. A method is proposed whereby
the multiplication of fermion species on a lattice is reduced to the minimal doubling, in any dimension,
with retention of appropriate chiral symmetries. Also, it is suggested that use of spatially thinned fer-
mion fields is likely to be a useful and appropriate approximation in QCD—in any case, it is a self-
checking one.
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The most powerful methods for fully nonperturbative
calculation in field theories, notably including QCD, the
theory of the strong interaction, involve discretizing the
theory on a space-time lattice. While many impressive
results have been attained, such as numerical "proofs" of
the existence of the theory and the confinement proper-

ty, progress on many other important questions has
been impeded by technical and computational difficulties
which arise when fermions are included.

The technical difficulties I have in mind are the seem-

ing necessity either to replicate fermion fields —this is

commonly called the doubling problem, although gen-
erally a higher power of 2 appears —or to break chiral
symmetry explicitly at intermediate stages, hoping to
recover it in the continuum limit. The former approach,
strictly speaking, does not even allow QCD with a fully
realistic spectrum of quark masses to be formulated,
while the latter is very demanding computationally. In
this Letter, a method is proposed which promises to al-
leviate these technical problems significantly.

The computational problems have to do with the awk-

wardness of treating particles obeying Fermi statistics by
Monte Carlo methods —the action is not given in a man-
ifestly local, positive definite form. No general remedy
to this problem is suggested here, but I will make some
specific suggestions for easing the computational burden
in QCD, with or without a 8 term.

Although the methods advocated in Refs. 6 and 7
seem to be the ones most used in practice for latticizing
fermions, there are several other proposals in the litera-
ture. s " Some of these are nonlocal (Refs. 8 and 9).
Nonlocal formulations raise the spectra of nonlocal
counterterms, which seem very difficult to control. The
others are sufficiently complex that they have not been
put to practical test.

It should be mentioned that for nonrelativistic fer-
mions, the doubling problem does not really arise. '

The doubling problem is best understood by focusing
on zeros of the inverse propagator (poles of the propaga-
tor) in momentum space. On a lattice one cannot realize
derivative operators p„= —i tI/|Ix„directly; rather one
works with translation operators such as exp(ip„a),

where a is the lattice spacing, and the algebra generated
by them. (In this Letter I consider only cubic lattices. )
The continuum derivative is supposed to be obtained by
taking the limit a 0 of (1/a) sinp„a.

The doubling problem in one dimension is very simple
to appreciate. Namely, the lattice inverse propagator,
or single-particle Lagrangean

X = y~a
' sinp ta or ytf (p t )

has a zero not only at p~ =0 but also at pt =tr/a. (Note
that p~ is periodic in 2tr/a. ) Thus one has generated a
second, undesired fermion degree of freedom, which sur-
vives in the continuum limit. Can this extra fermion be
eliminated by use of some other function in place of
sine? A simple topological argument shows it cannot be:
Since the Lagrangean is periodic, if it crosses zero at one
point, say with positive derivative, it must cross zero at
another point with negative derivative in order to return.
It is possible to eliminate the second zero by adding a
term proportional to the unit matrix, e.g. ,

X = y~a
' sinpta+ tc(sin pta)/a.

This is the essence of Wilson's procedure. This modi-
fication of X (or, more precisely, its analog in higher di-
mensions) has the unfortunate feature of destroying
chiral symmetry, and unless rc is tuned to a critical value
the fermion will generally acquire a mass of order the
"natural" size, i.e. , 1/a, so that passage to the continuum
limit is quite delicate.

In two dimensions slightly more sophisticated argu-
ments are necessary. Let us consider the general chiral-
invariant Lagrangean

& = ytf i+ y2f 2.

Here f~ and f2 are functions on a torus, i.e., periodic in

pt and p2 with period 2tr/a. Again I focus on the loci of
the zeros of f~ and f2. The intersections of these curves
locate the poles of the propagator. The straightforward
choice f~ =(1/a) sinp~a, f2=(1/a) sinp2a leads to the
situation shown in Fig. 1. There are four intersections.
In D dimensions, there will be 2 intersections. A more
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FIG. 2. Loci of zeros in the coe%cients, in the generic case.

FIG. 1. Loci of zeros in the coe%cients of y matrices for the
standard lattice Lagrangean.

general choice might lead to a closed curve for fit
separating the positive and negative regions as in Fig. 2.
But even in this case there must be at least two intersec-
tions: The locus of zeros of f2 cannot end, so that if it
enters the region enclosed by the zeros off ~

it must leave
it again. The discreteness of the lattice enters the argu-
ment here, in making p space compact, so that the 0
locus cannot run oA' to infinity. So doubling —in the
sense of having poles at two momenta —is unavoidable.

Similar arguments can be made in four dimensions.
The intersection of the zeros of f~,f2,f3 (defined in the
obvious way) must leave the region enclosed by zeros of
f4 if it enters. Although the argument for doubling
presented here is heuristic, I believe it could be made
rigorous without great difficulty. It is closely related to
the "heuristic roof' of Nielsen and Ninomiya. '

It remains to discuss the chirality of the fermions. For
definiteness, suppose we started with four-component
fermions in 4D. Given a chiral invariant Lagrangean,
i.e. , of the form

after projecting with —, (1 —
y&) we will find two left-

handed and two right-handed ferrnions. Similarly, in

Fig. 2 we will find one of each. It is clear, intuitively,
that successive intersections (following a curve of zeros)
will always result in opposite chirality. And so, within
this framework one always finds equal numbers of left-
and right-handed fermions. %'hen the theory is gauged,
it is vectorlike and no anomalies arise. Indeed, it would
present a bit of a puzzle if anomalous theories could be
regulated in any straightforward way on a lattice, be-
cause there would be no ultraviolet divergences to inter-
fere with the formal proof of Ward identities.

The discussion above suggests that awhile doubling —in
the sense of two poles —is unavoidable for chiral
Lagrangeans on the lattice, further multiplication of
species might be avoided by a judicious choice of fj In.
particular, if one of the loci of zeros is a narrow ellipsoid
and the rest are the standard pairs of straight lines, then
only two intersections will occur, A specific f'orm which
works is the following:

f4=a 'jsinp4a+k[sin ( —,
' p~a)+sin ( —,

' pea)

X=+, y;f;(p), (4) + sin'( —,
'

p3a ) ]I,
(s)

the fermion fields —,
' (1 —y5)y and y —,

' (I+ ys) are in-

dependent of the other projections; so we may restrict
the theory to this set. It might appear then that we have
produced a theory with exclusive1y left-handed particles.
This appearance is deceptive, however, for the following
reason. The numerical matrix "y5" is defined to be the
product yi y2y3y4, in this order. Now near difI'erent poles
the coefficients of the numerical matrices y&, . . . , y4 may
be associated not with the momenia p i, . . . ,p4, but with
a scrambled set. In other words, the gradients of
f~, . . . ,f4 need not point in the positive x~, . . . , x4
directions. A linear transformation of y may be neces-
sary to bring the residue at the pole into canonical form.
If the linear transformation bringing the scrambled set
into canonical form reverses orientation, then the dy-
namical meaning of the numerical matrix y5 will be re-
versed: the projection ~ (1 —ys)y will correspond to
right-handed particles.

Now return to the figures. In each case, the directions
of the gradients of f~ and f2 are indicated with one- and
two-headed arrows, respectively. In Fig. 1, the intersec-
tions at the lower left and upper right corners have one
orientation, the other two intersections the other. So

f, =a 'sinp~a, j=1,2, 3,

where X & l. For all the f~ to be zero, we must have

pj =0 or n. and thus sin (~zp&) =0 or 1, respectively.
But if any sin ( —,

'
p~) =1, then f4 cannot vanish. Thus

the only two poles are at p = (0,0,0,0), (0,0,0, zr).
Projecting out with —,

' (1 —y5), we find a left-handed
fermion at the first pole and a right-handed fermion at
the second. So we have the degrees of freedom of a sin-
gle Dirac fermion in the continuum limit.

The proposed form of the Lagrangean destroys the
equivalence of all four directions under discrete permuta-
tions. This introduces a new relevant operator in the
continuum limit, i.e., Fo;Fo;. (In the theory including
fermions, additional new relevant operators appear. ) So
to obtain the correct limit, the lattice version of this will
have to be included with the correct coefficient. This
delicacy is similar to, but much less severe than, the one
mentioned before for Wilson fermions. There is no Ila
factor, and the coefficient vanishes in a calculable way
for weak coupling.

Since the poles are at distinct points in momentum
space, they cannot be connected to one another by a
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translation-invariant bilinear mass term. Thus our fer-
mion is massless. Translation through one lattice spac-
ing in the x4 direction becomes a discrete chiral symme-
try in the continuum limit, since it multiplies the left-
handed fermion by +1 and the right-handed fermion by
—

1

Note that the mass term is forbidden by a discrete
chiral symmetry. There is no global symmetry in the
lattice-regulated theory; indeed if there were, we would
have difficulties with the Sutherland-Veltman theorem.

How can we add a mass term? We can isolate the
smooth effective fields which become left- and right-
handed fermions in the continuum limit by taking ap-
propriate combinations within unit cells, i.e., the two
points (x,na), (x, (n+1)a), where x is arbitrary and n

even. The left-handed field is

pL (n) = —,
' (1 —y5) jy(na)+ y((n+1) )a1, (6a)

&&,g= g e"P~(na)yL(na)+H. c.
n even

(7)

The possibility of implementing a complex mass is in-
teresting from several points of view. It gives us a
method of implementing the P, T-nonconserving 0 in-
teraction of QCD, bypassing the rather awkward pro-
cedure for doing the same thing in the gluon sector. For
example, periodicity in 0 0+2m is entirely trivial to
see with fermions, but awkward for gluons, even though
both implementations are supposed to lead to the same
physics in the continuum limit. It is interesting to study
QCD at nonzero 9, not only to test various speculations
on QCD dynamics, but also to determine the behavior of
the axion mass at high temperature, which is significant
for cosmology. '

There is also a more subtle advantage to implementing
the 0 parameter as a complex fermion mass. In the ab-
sence of fermions, the dependence of contributions to
physical quantities, e.g. , the vacuum energy, from dif-
ferent configurations can have violent fluctuations. Spe-
cifically, for 0=x addition of just one instanton changes
the sign, and so if the instanton density is high the net
result will be the result of subtracting two large quanti-
ties, which is highly undesirable computationally. In the
presence of fermions, the dependence on 0 vanishes as
rn 0, and can be adjusted to match computational
resources.

Even the pure-gluon result, if desired, can be obtained
by consideration of a single very massive fermion. As its

and the right-handed field is

Pp(n) =
@4'& 2 (1 —y5) fy(na) —y((n+1)a)f, (6b)

where the unitary transformation necessary to reverse
the sign of y4, and thus bring the kinetic energy expand-
ed around p =(0,0,0, n) into canonical form, has been
displayed —and the dependence on x suppressed. ' The
mass term is then

mass goes to infinity, it decouples, leaving behind only a
renormalization of the coupling and the 0 parameter.

In conclusion I would like to mention another idea,
only:angentially related to the preceding, for speeding
up calculations of QCD including fermions.

The standard method for putting QCD on a lattice in-
volves putting the quark fields at lattice sites and gauge
fields on the links. In the calculations, much more time
is spent calculating the effects of the quarks than the
effects of the gauge fields. This is because the measure
for gauge fields (i.e., the action) is given in a simple
positive-definite local form while no such representation
for the measure of the quark fields is known —nor is one
likely to exist.

Since the fermion degrees of freedom are much more
diScult to deal with than the bosons, it seems good stra-
tegy to thin them out as much as possible. And so the
following sort of idea suggests itself: Instead of putting
fermion fields at every site, let them only be defined at
every other site. Of course many variants are possible:
One could use every other site in the x direction but all
sites in the others, every third site, and so forth. In fact
it may be very useful that this flexibility exists —by com-
paring the results which emerge for different choices, the
accuracy of the scheme can be assessed. One would start
with some very coarse spacing, and reduce it until suc-
cessive reductions have no effect on the result, to the
desired accuracy.

It is simple to see that this proposal can be implement-
ed in a gauge-invariant way. In a way it is a generaliza-
tion of the old idea of staggering fermions —pushing that
thought further in a systematic way.

Is there reason to think that treating quarks on a
coarser spatial scale than gluons is appropriate? Several
physical considerations, while far from rigorous, suggest
that it may be. First of all, the numerical value of
perturbative renormalization-group parameters —the P
function and other anomalous dimensions —are typically
dominated by gluon contributions. This indicates that
the short-distance behavior of QCD is dominated by the
gluons, and so it seems appropriate to treat them more
carefully at short distances. Related to this is the fact
that the glueball spectrum, while sparse at low energies
(~2 GeV), is expected to become extremely dense at
higher energies. Plausibly, it is most important to in-
clude the quarks at long wavelengths, where the gluons
are frozen out by the large glueball mass, but less impor-
tant to treat them accurately at short wavelengths, where
in any case they are dominated by the gluons.
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