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Galaxy and structure formation in a neutrino-dominated universe with cosmic strings is investigated.
Strings survive neutrino free streaming to seed galaxies and clusters. The effective maximum Jeans mass
is about 1.5 x 10' hgo Mo, lower than in the adiabatic scenario. Hence cluster formation is only margin-
ally different from that in the cold-dark-matter and strings model, but galaxy masses are lower. The
mass spectrum of galaxies is flatter than with cold dark matter, and the density profile about an individu-
al loop is less steep, in better agreement with observations.
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The standard nucleosynthesis scenario' constrains the
energy density in baryons to be Q~ ~ 0.15, but theoreti-
cal prejudice insists that the total energy density is
0 = 1. The remainder of the density of the Universe
must then be nonbaryonic. It is called hot if the dark
particles have relativistic peculiar velocities at the time
t,q of equal matter and radiation and cold if they do not.
Massive neutrinos are the best motivated candidates of
either kind, and a (hot) r neutrino with mass m, =30 eV
would be consistent with all existing constraints.

Models with linear adiabatic density perturbations and
hot dark matter (HDM) are, however, hard to reconcile
with observations. In these models perturbations on
mass scales smaller than 10' Mo are wiped out by the
free streaming of neutrinos just before tcq. Hence,
galaxies can only form by fragmentation of larger ob-
jects.

With cosmic strings as the source of density perturba-
tions, the situation is quite diA'erent. The strings survive
neutrino free streaming and can seed small-scale struc-
ture, albeit less efticiently than with cold dark matter
(CDM).

The essentials of the scenario are the same as for
strings and CDM. Loops with the mean separation of
galaxies are to be identified with galaxies and similarly
for clusters. Thus the scale-free correlation function
predicted with strings on large scales is unaffected.
What is diAerent is the e%ciency of accretion. Small
loops accrete less and the mass spectrum of objects
n(M) is less steep. The density profile about an indivi-

dual loop is less steep than with CDM.
Galaxy cores would be primarily baryonic, neutrinos

being prevented from clustering on small scales by
phase-space constraints. Galaxies will have formed re-
cently, and thus there will be significant evolution at low
red shifts unlike in the CDM scenario.

Neutrino accretion. —Neutrino accretion may be un-
derstood heuristically as follows. The accretion time
scale is tH, the Hubble time, during which the neutrinos
move a distance k, =v, t H, where v, is their velocity. On
scales below k„perturbations are washed out, but on
larger scales they grow in the usual way. At t,q the rms
neutrino velocity is v, =0.17 and t H

=50h 50 Mpc,
where h qo is the Hubble parameter in units of 50 km s
M pc '. Therefore, at r,q, X,(r,„)=A, ,q

= 8h so M pc.
In the string model, perturbations on all comoving scales
larger than k„q start growing at tzq whereas scales

must wait until k, ,q(a/a, q)
'I =k before

growth starts.
Now we proceed to a more precise treatment. Since

the neutrinos interact very weakly, their phase-space
density is conserved and satisfies the Liouville equation.
Brandenberger, Kaiser, and Turok derived an integral
equation for the Fourier-space energy-density perturba-
tions Sp, (k) in neutrinos about a cosmic-string loop
starting from the Liou ville equation and perturbing
about a homogeneous initial distribution.

With the choice of a(t,q) =1, then in terms of a new
time variable z =

2 [(a+1)'I —1], the resulting integral
equation for 8,(k) =8p, (k)/p„ is'

z

6,(k, z) =6) dz'[6, (k, z')+1/f~/p„, ,q]F(z,z')/[1+a F (z,z')1, (1)
with F(z,z') =ln(1+1/z') —ln(1+1/z). Here a =kvor+ with vo=T, ,q/m, =0.05 a measure of the neutrino velocity
at r,q and r+ =(8+Gp„,q/3) ' =2' tH, q. p„qis the energy density in neutrinos at t,q.

In comoving units, vore =3.5h5p Mpc. Modes with k)& (voz~) ' are suppressed. Equation (1) is valid right
through the radiation-matter transition. zo is the time when accretion begins. For k =0, (1) yields the usual equation
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for the growth of perturbation in CDM. '

We have solved (1) numerically for 6,(k,z). For
large enough z, each k mode grows as z —a(t). Thus
C(k) =(p, ,q/M~)6, (k, z)z tends to a constant. In
Fig. 1 we plot C(k) vs a(k) for two diA'erent values of
zo. An analytical fit, which is good for 0~ a~ 100, is
C(k) =A/[8+a (k)]. For zp=0. 01 (i.e., initial scale
factor ap=0. 04) the constants A and 8 are A =1.1 and
8=1.l/6. For zp &0.01, there is no significant change.
For zp=0. 1 (i.e. , ap=0. 44), some growth is lost and
A =1.1 with B =0.4.

The mass profile of the accreted neutrinos can be cal-
culated analytically. For a &) 1, the mass inside a cornov-
ing radius x is

In C

6M ( & x ) = QM a [1 —[1+(x/L ) ]e (2)

where a=A/48= —,
' for zp«1 and a=0.7 for zp=0. 1,

and L =t'ps~/JB =8 4hsp . Mpc for zp&& 1 and L
=5.6hsp Mpc for zp =0.1. The second term in (2) is
the growth suppression due to neutrino free streaming.
For x &&L, there is very little suppression, but for x «L,
6M( & x) =x, quite diITerent from CDM. Our answer
for L agrees well with the naive estimate and gives the
eft'ective maximal Jeans mass MJ (mass inside a ball of
radius L) quoted in the abstract.

Baryon accretion and l'oop decay. —Accretion of
baryons begins on all scales after baryons decouple from
radiation at red shift of z„,=1.5x 10 . This makes little
diff'erence on scales X & L, since neutrinos are already
clustering and the baryons will just track them. Howev-
er, on small scales, neutrino perturbations have not start-
ed growing and baryonic clustering is important. The
equation governing the fractional density enhancement
in baryons 8=6ptt/ptt in the matter-dominated era is'

1 Inu

FIG. 1. The net growth of the neutrino perturbation at late
times t. a is the wave number in units of (voi~) '. The solid
curve represents the results starting with zero perturbations at
a red shift a (t ) « a (t,q), the dashed line starting at
a(t )/a(t„)=0.44,

6+46/3t 2nttd/3—t ' =4trGSp„ (3)

where Bp, is the source perturbation. For a point mass 6p, =M~(t)a (t)ps(x), and when we take into account the
decay via gravitational radiation, M~(t) =M&(I —t/td), where M~ is the initial mass and td is the decay time. Fqua-
tion (3) can be solved to give (for Qtt = —,

' ) the accreted baryonic mass gM~(a):
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(4)

if a & ad. Equation (4) fails once neutrinos start to clus-
!ter. On a comoving scale x, this happened when

a(t) =aJ(x) =(L/x)'.
Loop decay also aff'ects neutrino growth. We have in-

tegrated (1) numerically in the matter-dominated era
with the source mass varying as above. The results are
shown in Fig. 2 where the ratio f, of the growth factors
with and without loop decay are plotted as functions of
zd/zJ = (ad/aJ)

Now we calculate the density profile taking loop decay
and baryon accretion into account. We can write in a
phenomenological manner

8M( & x) =M„,d(aJ(x) ) [a/aJ(x)].
The seed mass at aJ(x) is the sum of the neutrino mass
at aJ(x) in the absence of baryons —this equals f,M~
and the mass in baryons at aJ(x)—we denote this by
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exactly at z,q then (=4. The mass of a galaxy loop is

Ms ~ t, =M, ~00~(dg/d, ), where dg (d, ) is the mean sep-
aration of galaxies (clusters).

In the spherical-collapse model, a shell which collapses
reaches its greatest density when Bp/p calculated in
linear theory reaches 1.58. We shall use this to define,
through (6), the total nonlinear mass accreted by a loop.
Using ds/d, =1/11 and f8+f, =0.75, we find

Ms„,„y—5 x 10 Mohso(crc/700) s(g/4) 3(1 ldz/de) 6.

02-
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This corresponds to a rotation velocity for the shell just
collapsed of

FIG. 2. Loss in growth due to loop decay for galaxy loops.f„is the ratio of the density perturbations with and without
loop decay. az is the scale factor when the wavelength equals
the Jeans length, ad when the loop decays.

tl„t=J3o'g= J3(Ms,h„y/M, ) '~ cr,
' 2 r

=(50 km s ') h
700 4

' 2

C

f~Mtt where fz is given by (4). Hence, from (2) and
(5),

6M((x) 3 Mia L (f +f )( )
M 4 Mg x

(6)

Consequences. —Now we turn to the consequences of
the above calculations. We normalize Gp (p is the mass
per unit length in string, G is Newton's constant) by
demanding that loops with a mean separation of Abell
clusters have accreted an Abell-cluster mass around
them. Since 6M/M=130 inside an Abell radius, " the
comoving scale corresponding to the Abell radius 3h50'
Mpc is (130) '~ 3hso' Mpc =15hso' Mpc, much larger
than the maximal eAective Jeans length L. Thus, only a
very small growth factor is lost compared to the cosmic-
string scenario with CDM.

However, galaxies are much smaller than with CDM.
For galaxy loops we find ad/a „,= 10 and, hence,
f~+f,=0 75 on scales .x =1 Mpc corresponding to
masses of =3x10''Mo. fg+f„is very weakly depen-
dent on x, although fq» f, at small x and vice versa at
large x.

The galaxy loop mass is given in terms of the cluster
loop mass M, ~„z,fixed by the mass M, of a cluster:

&/3

p M,
(7)

5 pb 1+z q

Here p/pb =130(cr,/700) is the overdensity in a cluster
today and o., is the one-dimensional velocity dispersion
in kilometers per second. The factor 5 comes from
matching the growth through the matter-radiation tran-
sition to that of a spherical collapse model, ' and p/pb
enters because from this one can tell the red shift at turn-
around. g is a factor representing the loss in growth
due to a loop being formed near z,q. If a loop is formed

with M, =10' Mohso'(cr, /700) =3o R/G, where R
=3h50' Mpc is the Abell radius. If A~ =

8 and the
baryons contract by a factor of 8, then the optical rota-
tion velocity would be similar.

Our galaxies therefore look rather small, but the re-
sults include considerable observational uncertainties. If
cr, =1000, then Ms, ~,„r=10'Mo. Increasing g and hso
further increases the result. This increases the string
tension required, since '

Gp=2x10 hso p&o vo. o&~ (g/4)(crJ700) (10)

p~o and voo~ give the values of the string parameters in

units of their "standard" values. Increasing Gp in turn
boosts the magnitude of the expected streaming veloci-

13

With hot dark matter, galaxies look very diff'erent
than they do with CDM. Phase-space arguments show
that 30-eV neutrinos cannot cluster on scales smaller
than about 10 kpc. Hence, the inner regions of galaxies
would be almost entirely baryonic. The halo would be
comprised of neutrinos. The density profile for hot dark
matter is p(r) =r, which gives a Hat halo-rotation
curve. This result follows from the analysis of Fillmore
and Goldreich' which shows that an initial spherical
perturbation with 8'M/M=r " with y(2 always col-
lapses to give flat rotation curves.

The mass function of objects expected with HDM is
also different from that with CDM. From (6) we see
that to a first approximation the nonlinear mass M scales
as x =M~, since f~ depends only very weakly on the
decay time. Let n(M)dM denote the number density of
objects with masses in the range [M,M+dM]. For
strings and CDM, n(M) =M ~ on the scale of galax-
ies. For HDM, we find using n (M

& )dMt =M
&

~ dM
&

that n(M) =M ~, in better agreement with the
Schechter luminosity function. This is valid for masses
M&&M,„,where M,

„

is given by the mass accreted by a
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loop which decays at t„,: M,„=4x10
jects with M & M,„areseeded by loops which decay at
td(R) =t„,t.d(R) is given by td(R) =(@GAL) 'R, with

y =5. The mass accreted by such a loop can be deter-
mined from (4) by expansion in R —(yGp)t„, W. e find

that in the limit M 0, n(M) —M 'l . For clusters
(M&Ms), we have the same n(M) as with CDM,
which has been shown to fit the data rather well. '

Our model does not explain the exponential decay of
the luminosity function for galaxies at the bright end
without invocation of the Rees-Ostriker stability argu-
ments. The distribution of dark baryons is also an open
question. Dark baryons could explain the halos of dwarf
spheroidals and could also eff'ect the ratio of mass to
luminous mass. These issues deserve further attention.

We conclude that the cosmic-string theory with HDM
is an interesting cosmological model which deserves fur-
ther study. There are testable diff'erences compared with
a model with CDM. Flat halo-rotation curves, a charac-
teristic mass function, and smaller galaxy masses are the
main predictions. Similar conclusions have also recently
been reached by Bertschinger and Watts. ' Neutrino
clustering in a more general context has been considered
by Cowsik and co-workers. '
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