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We formulate the current-density —functional theory for systems in arbitrarily strong magnetic fields.
A set of self-consistent equations comparable to the Kohn-Sham equations for ordinary density-
functional theory is derived, and proved to be gauge invariant and to satisfy the continuity equation. We
prove that the exchange-correlation energy functional E„,[n,j~] [n(r) is the density and je(r) is the
"paramagnetic" current density] depends on the current via the combination v(r) =Vx [j~(r)/ (nr)]. An
explicit formula for E„,is derived, which is local in v(r).

PACS numbers: 71.10.+x, 71.45.Gm, 75.20.—g

Since the seminal papers of Hohenberg and Kohn'
and Kohn and Sham, density-functional theory (DFT)
has developed into an important tool for the treatment of
many-body problems in condensed-matter physics. Its
practical success has prompted much theoretical work
aimed at the extension of the applicability of the theory
to systems more general than those considered in the
original papers. '

The interest of this Letter is the formulation of the
current density -function-al theory for systems in the
presence of an external magnetic field. Many recent ex-
citing phenomena involving electrons in large magnet-
ic fields are a strong motivation for the need of such a
formulation.

Magnetic fields have been incorporated in the DFT
only insofar as they cause spin polarization. ' The
fact that also orbital currents are induced has long been
recognized. Here we incorporate this eAect into the
self-consistent formulation of one-particle equations
which lies at the heart of a practical implementation of
DFT. The basic variables are the particle density n(r)
and the "paramagnetic" current density j~(r) [see Eq.
(2)]. The latter must be used rather than the physical
current density [see Eq. (3)] because it uniquely deter-
mines the vector potential and the ground-state wave
function. Furthermore, since in the variational principle
the external vector potential is kept constant, the mini-

mization of the energy functional will have to be with

respect to jz. Consequently, a key difficulty that we had
to overcome is that a one-particle-equations formulation
does not a priori satisfy the physical requirements of
gauge invariance and the continuity equation.

In the following we demonstrate that both require-
ments can be actually satisfied because of an exact trans-
formation property of the exchange-correlation energy
functional, which we derive here. As a consequence of
this transformation, the exchange-correlation energy
functional E„,[n,j ~], which is now a functional of both
particle density and "paramagnetic" current density,
takes the form

E„[n(r ),j~ (r ) ] =E„,[n (r), V && [jz (r )/n (r) ]] ( I )

IE„, is a functional of both n(r) and Vx [j (rP)/n(r)]].
This is the first key result of the Letter, and it is this
which allows the formulation of single-particle equations
in the presence of a magnetic field. A second result is an
explicit calculation of E„in the limit of a slowly varying
magnetic field.

We start with a brief discussion of the uniqueness and
variational properties of the energy, now in the presence
of an external magnetic field. The nonrelativistic Hamil-
tonian for a system of Ã electrons in external scalar and
vector potentials t (r) and A(r) is

0 =T+U+ V+ W.

The definitions for the various terms are (e is the abso-
lute value of the charge) as follows:

T= J d3r y'(r)[ —(62/2m)V2]y(r), U= —,
'

Jr d r„d r'y~(r)yt(r')u(rr')y(r')y(r),

V= d rv(r)n' (r), W= — d rj~"(r).A(r)+ Jt d rn' (r)A2(r).
2mc

The density operator is defined as n'"(r) = tlr (r) y(r), and the paramagnetic-current-density operator is

jg"(r) = [y (r)Vy(r) —[Vyt(r)]ttr(r)].
2ml

(2)

2360 1987 The American Physical Society



VOLUME 59, NUMBER 20 PHYSICAL REVIEW LETTERS 16 NOVEMBER 1987

The physical-current-density operator is given by

j' (r) =jP(r)+ (e/mc)n' (r)A(r),
and satisfies the continuity equation

V.j ' ( r; t ) + t)n 't'(r; t )/t) t =0.

(3)

In the above equations we have disregarded spin in order
to concentrate on the novel physical feature of the orbital
currents. Inclusion of spin is straightforward and will be
considered elsewhere.

We now run through the basic theorems of density-
functional theory in magnetic fields. Let j~(r), j(r), and

n(r) denote the ground-state averages of the correspond-
ing operators: Then the potentials v(r) and A(r), and
hence the ground-state wave function y, are uniquely
determined (apart from an additive constant in the sca-
lar potential) by the knowledge of the density distribu-
tions n(r) and j~(r). ' For, suppose that there are two
sets of fields c(r),A(r) and v'(r), A'(r) giving the same
ground-state distributions n(r) and j~(r). Let

l y) and
l
y') be the two diA'erent ground states corresponding to

the two sets of fields. Let H and H' be the two corre-
sponding Hamiltonians and E and E' the two ground-
state energies. Then from the variational principle for
the ground state of H, we obtain the inequality

E =&y l
H

l y) & (y'
l
H

l

y'& =E'+ J d r n(r) [v (r) —» '(r)]
2

+ —
g d'rj~(r) [A(r) —A'(r)]+ d'rn(r)[A (r) —A' (r)].

c 2mc' "
Another inequality is obtained by our interchanging the primed and the unprimed variables, and summing the two ine-
qualities we get the contradiction

E+E' & E+E',
which proves the theorem.

For the variational principle, let

F[n', j~] = (y[n', j~]—l
(T+U)

l
y[n', jz]),

where y[n', j~] is the ground-state wave function corresponding to n' and j~. Then the functional

2

E,, A[n', j~] =F[n', j~]+& d r'n'(r)v(r)+ —
g d rj~(r) A(r)+ „d rn'(r)A (r)2mc2" (5)

has a minimum when n' and j~ take the actual values corresponding to the potentials v and A. This follows from the
variational principle for the ground state of H, since

E,, A[n', jp] =(y[n'jp]
l
H

l
y[n', jt', l& &y[n, jt, ]

l
H

l y[n, jt, ])=E„A[njt, ],
which proves the theorem.

We now turn to the formulation of the one-particle equations. We first define the exchange-correlation energy func-
tional as follows:

F[njz] = T, [n, j~]+ —,
'

J d rJ d r'n(r)u(r, r')n(r')+E„, [n, j~],
where

T, [ j n]=p(yo[n, j—~] I
T

l yo[n, j~]), (7)
and yo[n, jz] is the ground-state wave function corresponding to n and jz in a noninteracting version of the system.
yo[n, jz] is a Slater determinant of one-electron orbitals y; which satisfy a one-particle Schrodinger equation with
some, as yet undetermined, eftective potentials. The functional T, is also expressed in terms of the y; s. Putting this
representation of T, in Eqs. (6) and (5) and carrying out the minimization of E„, ~ determines the effective potentials.
We get the following self-consistent formulation for the ground-state density and current:

n(r) = g l y;(r) l, j~(r) = g [y,*(r)Vy;(r) —[Vy;*(r)]y;(r)],
2ml

2
2—i hV+ —[A(r)+A„(r)] +

2
[A (r) —[A(r)+A„,(r)] j

2&i c 2&1c

+v(r)+„I d r'u(r, r')n(r')+v„, (r) y;(r) =e;y;(r),

v „,(r) =8E„[n,j~]/6n (r) l;,
(e/c)A„, (r) =BE„[n,j~]/Sj~(r) l „. (lO)
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The ground-state energy is given by

jv

E = g e; ——,
'

Jt d r„t d r'n(r)u(r, r')n(r') —„I d rn(r) L„,(r) ——
„~ d r jz(r) A„,(r)+E„,ln,jz]

i=1 C"

Notice that the effective vector potential A+A„, enters the Schrodinger-type equation linearly.
We now prove the important result, Eq. (1), for the form of E„,.
Proof. —Consider the transformation

j~(r) j~(r)+ (e/mc)n(r)VA(r) =j~(r),

where A(r) is an arbitrary function. Clearly, the transformation of the wave function is

jv

y[n, jz] =y[n, jz] exp i g A(r;)
Ac;

The transformation of F is easily obtained from the definition (4):
r~ 2

F[n, jp] =F[n, jz]+—„d r jz(r) VA(r)+ J d rn(r)
~
VA(r)

~

C 2mc

(i 2)

E„,[n,jp] =E„,[n, v]. (i4)

We next prove that this form, in conjunction with Eq.
(8), implies V j =0; i.e. , the static continuity equation is
satisfied.

Proof Taking the fu.n—ctional derivatives of Eq. (14),
we find

6E„,[n, v]—A„,(r) = — V&& (is)

6E„,[n, v] e jz(r) (16)

Equation (15) implies that V [n(r)A„,(r)] =0. Since

The crucial point above this equation is that the transfor-
mation depends only on n and j~, not on the wave func-
tion. Therefore, the same transformation applies also to
T, [n, j~], defined in Eq. (7). Putting these results to-
gether in Eq. (6), we discover

E„,[n, j~+ (e/mc)nVA] =E„,[n, j~]

This is an exacts property of the E„, functional. Another
way of expressing this property is that E„can only de-
pend on the combination v(r)—:VX [j~(r)/n(r)]:

the Schrodinger-type equation (8) already guarantees

V. [jz(r)+ (e/mc)n(r) [A(r)+A„,(r)]] =0,

it follows that V [j~+ (e/mc)nA]—:V. j =0.
Finally, we prove that Eqs. (15) and (16) also ensure

the gauge invariance of the formulation.
Proof. —Let tir; be the self-consistent orbitals corre-

sponding to the vector potential A. If A A —VA

=A„,„, let us multiply all the y s by a phase factor
exp[(ie/Ac)A(r) l. As a consequence, j~ transforms ac-
cording to Eq. (12), while n is invariant. From Eqs. (15)
and (16), one sees that A„, is invariant, while V„,
changes by —(e /mc )A„,. VA. Putting these transfor-
mations in Eq. (8), one easily verifies that the new y s
are indeed the solutions of the new self-consistent prob-
lem. Similarly, one verifies that the ground-state energy,
given by Eq. (11), is gauge invariant.

Equation (14) is a strong constraint on the admissible
form of any approximate E„. For example, one immedi-
ately sees that a local approximation for the current den-
sity does not exist. On the other hand, a local approxi-
mation in v(r) is possible. We now present a local form
for E„„which is exact in the high-density limit and to
order v . For an almost uniform electron gas, the E„,
functional can be written as

E„,[n, j~] =ED, [n] ——,
' g j~(q). [P '(q) —Po '(q)] j~( —q),

E„,[n,j~] =E„,[n]+ d3r
24m

(17)

where Eo, is the usual functional in the absence of currents and P(q) is the paramagnetic response tensor of the uni-
form electron gas' [Po(q) is the same function for the noninteracting-electron gas]. The longitudinal part of P (P ) is

equal to —n/m and cancels in the difference. The transverse part, for small q, has the form P(q) = —n/m
—(c2XL/e )q, where ZL is the diamagnetic susceptibility (for the noninteracting gas c XL/e = —UF/12' h, where vF

is the Fermi velocity). The local form corresponds to a slowly varying current. We obtain, therefore,

j,(r)px

(kF is the Fermi momentum). We have calculated the diamagnetic susceptibility of the interacting-electron gas in the
high-density limit using the random-phase approximation (RPA). The calculation is very lengthy and will be presented
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elsewhere. It parallels Ma and Bruckner's calculation '

of the exchange-correlation energy of a weakly inhomo-
geneous electron gas, but here is applied to the current-
current correlation function. We found the exact re-
sult '4

XL/ZL =1+0.02764r, inr, +0.01407 r, +O(r2lnr, )

(18)

(r, is the usual electron-gas parameter). We have also
extended the RPA calculation to metallic densities,
~here the high-density expansion is no longer applic-
able. ' The transition to the inhomogeneous system is

made by letting n n(r) in Eq. (17). The Fermi
momentum and the diamagnetic susceptibilities are now

those corresponding to the local density. The condition
(14) removes the ambiguity in the position of n(r) rela-
tive to the V operator.

Equation (17) is the first explicit construction of a
current-dependent F. „,. It is valid at high densities and
for magnetic fields B satisfying the condition 2paB(r)
«Eq(r) [pa is the Bohr magneton, and EF(r) is the lo-

cal Fermi energyj. For systems with EF=1 eV, this
condition is satisfied by all practically attainable field

strengths.
In conclusion, we have formulated the current-

density- functional theory for systems in arbitrarily
strong magnetic fields. We have constructed self-con-
sistent one-electron equations which are gauge invariant
and satisfy the continuity equation. An important prop-
erty of the exchange-correlation energy functional has
been discovered, and used as a guide to determine the
form of the functional in a slowly varying magnetic field.
%ith such an explicit form for E„, the exchange-
correlation potentials t. „, and A„, can be calculated and
the self-consistent equations (8)-(10) can be solved. '

It is therefore no longer necessary to ignore the impor-
tant eftect of the magnetic field on the form of the
exchange-correlation potential, as was the case, for ex-
ample, in the paper by Wang, Grempel, and Prange. '

We have now a rigorous foundation for incorporating the
orbital eAects of strong magnetic fields within the frame-
work of DFT. Further extension of Eq. (18) to lower
dimensionalities will be presented elsewhere.
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