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Measurement of the Sliding Charge-Density-Wave Phase Velocity in Rbo 3MoO3
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To determine the phase velocity of the charge-density-wave voltage, noise and Rb NMR spectra at
an electric field of about 15ET were measured together with I-V characteristics on a Rb03Mo03 crystal
between 40 and 60 K. NMR spectra are reproduced by use of a velocity distribution determined by the
noise spectrum. A ratio of the average noise frequency to j(ow of between 12.8 and 17.7 kHz/A cm
and a ratio of the average local-field oscillation frequency to jcnw of 11 ~ 1 kHz/A. cm ' are found,
values close to 12.5 kHz/A cm from the electron density. NMR sidebands show that local-field oscil-
lations are coherent.

PACS numbers: 71.45.Lr, 76.60.Cq

v„=v/X,

where k is the CDW wavelength.
Up to now, the measurement of v„as a function of the

CDW current j~Dw has been the only available method
to verify quantitatively the —long ago assumed —rela-
tion between j~Dw and the CDW drift velocity v,

v =jcDw/en, (2)

where, at low temperatures, n is the density of electrons
condensed into the CDW. The drift velocity is related to
the winding rate of the CDW phase:

vy = v /k = (1/2tr )dtlt/dt (3)

Various authors suggested that in Eq. (1), k should be
replaced by X/2 and Bardeen proposed that vq =2v„.

In this paper we report the first direct measurement of
v~ as a function of j~Dw from an analysis of NMR line
shapes based on the fact that v~ is also the frequency of

In a number of solids with a quasi one-dimensional
electronic structure, a nonlinear electric current is ob-
served ' below the Peierls transition termed sliding
charge-density waves (CDWs) or Frohlich conduction.
The CDW wavelength is incommensurate with the
periodicity of the underlying lattice in these materials
and thus the energy is independent of the CDW phase
relative to the lattice. An electric field may then induce
a sliding CDW which moves together with the periodic
lattice distortion. Impurities or other defects pin the
CDW so that Frohlich conduction appears only above a
threshold field ET. This extra current is accompanied by
large voltage fluctuations referred to as "noise, " the ori-
gin of which is not satisfactorily understood: It may
arise from impurities hindering the CDW motion or
from an instability at the boundaries between pinned and
unpinned regions. In both cases, the voltage noise fre-
quency v„ is related to the drift velocity of the CDW v

by

the modulation of the local field due to the CDW at a
nucleus. Previous NMR works ' have already demon-
strated the motion of the CDW but failed to give quanti-
tative information on the drift velocity v. Our deter-
mination of v~ relies only upon one assumption, namely,
that the voltage noise spectrum is proportional to the
spatial distribution of v. We verify relation (1) by a fac-
tor much better than 2. Direct comparison of the voltage
noise spectra with jcDw leads to similar agreement. We
also report the first observation of sidebands in the NMR
spectra which demonstrate that the temporal modulation
of the local field due to the CDW at a nucleus is periodic
rather than stochastic. The position of these sidebands
allows a straightforward determination of v~, establish-
ing unambiguously that v~ and v„are equal.

The Rbo 3Mo03 single crystal, kindly supplied by
J. Marcus, was 4.0 mm along the highly conducting b
axis and had faces 0.175X2.1 mm perpendicular to b.
Contacts were copper plated onto the polished faces. I-
V characteristics and noise and NMR spectra were taken
under the same conditions in situ in the NMR coil.
Eleven current-voltage characteristics were taken be-
tween 40 and 59 K. Joule heating was negligible under
the conditions of the experiments. The CDW current is
inhomogeneous over the sample cross section and the
measured density jcDw is an average value. The thresh-
old field at which a nonlinear current first appeared was
102+4 mV/cm within the investigated temperature
range in agreement with Dumas et al. '' For high elec-
tric fields, where, as the NMR shows, in nearly all the
crystal the CDW is depinned, both the CDW current
and the normal current are activated as reported by
Fleming et aI. ' The activation energy U|-Dw =754 K is
substantially larger than the normal current activation
energy U„=488 K (Fig. 1), in agreement with Janossy
et a/. ' The value of U„may be extrinsic.

The voltage noise spectra were taken at the same ap-
plied field of 1.51 V/cm at ten temperatures between 40
and 59 K. In the following, the voltage power spectra
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FIG. 1. CDW (circles) and normal (triangles) current den-
sities at a field of 1.5 V/cm (E/Er=15) as functions of inverse
temperature. The normal current is extrapolated from low-

field data. Activation energies are 754 and 488 K for the
CDW and normal currents, respectively.

F REQUENCY

(b)

388 3 kHz ]

(i.e. , the square of the voltage noise) is analyzed. All
noise spectra consist of a broad peak and a background
becoming large at low frequencies. The first harmonic of
the broad peak has an intensity of 10% of the total, in-

dependently of the temperature, and was subtracted
from the spectra.

The most important feature is that spectra taken at
difTerent temperatures with peak positions varying by 2
orders of magnitude can be scaled onto each other by
changes of the frequency and intensity scales only (Fig.
2). Thus, to a good approximation, the noise power
spectra are proportional to the same function f(v„/
v„(T)) at all temperatures where v„(T) is the first mo-
rnent of the spectra. The CDW current increases with

temperature as v„. Both the noise spectrum and the
CDW current are determined with the best precision at
59.2 K where we find

v„/jhow =13.4 kHz/A cm

and, in general, for temperatures between 40.6 and 59.2
K we find ratios of v„/jcDw between 12.8 and 17.7
kHz/A cm . The good agreement of these values with
the expectation from the electron density of 12.5
kHz/A cm together with the similarity of the spectra
(Fig. 2) support our view that the noise intensity spec-
trurn rejects the velocity distribution of the CDW and
that this distribution scaled to its average value is little
dependent on temperature. We assume in the following
that the velocity distribution is proportional to the noise
spectrum. This implies that the voltage oscillation inten-
sity of a single domain with a uniform CDW velocity is
independent of the velocity far above threshold. ' ' We
find that while the resistance changes by 2 order of mag-

FIG. 2. Noise power spectra at (a) 59.2 K and (b) 45.3 K.
The dc field is E =1.5 V/cm (=15ET) in both cases. A small
correction has been made to subtract the first-harmonic com-
ponent from the raw data. Note the similarity of the spectra
despite the change of a factor of 40 of the frequency scale.
The voltage power

~
V(v„)

~
changes inversely to the mean

frequency so that the total intensity remains constant. k is the
same parameter for the two spectra. The curve in (a) was used
to determine the velocity distribution for the calculation of the
NMR spectra of Fig. 3.

nitude (Fig. 1) between 40 and 59 K the total noise in-
tensity

~
V(t)

~
stays constant within a factor of 2. Al-

though this is contrary to the expectations of Ong and
Maki' based on the vortex model, we do not believe it
settles the question of the origin of the noise.

NMR spectra of Rb (site 2) were obtained by a
Brucker model CXP 100 spectrometer at 80.13 MHz.
Experimental details can be found in Ref. 9. The spectra
shown in Fig. 3 were taken at approximately the same
temperatures and with the same dc electric field (1.51
V/cm) applied to the sample as for the noise spectra. A
current source was used to minimize the eAect of small
fluctuations of the temperature on j~Dw during the runs,
which lasted typically 12 h. The pinned CDW NMR
spectrum is independent of temperature' in the investi-
gated range. At T =40 K, the application of 1.51 V/cm
does not alter the NMR spectrum, although the current-
voltage characteristics and the noise spectrum show that
the CDW is depinned. Clearly, the CDW velocity is too
small to induce a change in the line shape. As jpDw in-
creases with increasing temperature the edges of the
spectrum broaden and diminish in intensity and a peak
emerges at the center frequency of the static spectrum.
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kHz/A cm expected from the electron density in

Rbp 3Mo03. In Fig. 4 are shown the p = + 1 sidebands
observed at 49.2 K. The appearance of sidebands is evi-
dence for the temporal periodicity of the CDW motion.
Their positions and widths are well reproduced by the
computer simulation. The temporal coherence at a given
position is longer than 1 ms since the width of the side-
bands is well described by the spatial inhomogeneity of
the current. Moreover, an additional broadening due to
a temporal correlation time shorter than 1 ms would not
only add to the width of the sidebands but would be in-
consistent with the width of the central peak which
remains less than 2 kHz at all temperatures where it was
observed. It may be tempting, but incorrect, to analyze
the noise spectra in terms of a "narrow-band" Gaussian
peak, due to a quasiuniformly moving CDW, broadened
by temporal fluctuations, and a "broad-band" com-
ponent with high intensity at low frequencies with a
diA'erent origin. Taking the velocity distribution which
corresponds to the Gaussian peak only led to a disagree-
ment with the observed line shape for any average veloci-
ty at all intermediate temperatures.

In conclusion, we found the following: (i) The average
noise frequency v„generated by a current jcow is close
to that expected from both classical impurity and vortex
models; (ii) the noise intensity

i
V(t)

i
is nearly temper-

ature independent; (iii) the NMR spectra under current
are well reproduced by standard theory if the relat&'ve ve-
locity distribution is obtained from the noise spectra; (iv)
the frequency vd of local hyperfine field oscillations, a
direct measure of the CDW drift velocity, has a value
equal to the noise frequency v„within an experimental
accuracy much better than a factor 2; and (v) the ob-
served NMR sidebands provide direct proof for the
coherent nature of the sliding motion.
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