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We consider the time evolution of two Ising systems that differ at time 7 =0 in the orientation of only
one spin. The detailed time development is calculated from two algorithms: (i) Glauber dynamics and
(ii) Q2R dynamics (a deterministic cellular automaton). We find that for both algorithms spreading of
“damaged regions” is greatly hindered below a threshold temperature T (or energy), which agrees nu-
merically with the Curie point. For Glauber dynamics 7 is found to be a sharp phase transition point;
for Q2R dynamics we find a kinetic slowing down which is reminiscent of a (spin-) glass transition.

PACS numbers: 64.60.—i, 05.50.+q

How a perturbation spreads throughout a cooperative
system composed of interacting subunits is a question
that arises in many fields of research (see, e.g.,
Kauffman,' Derrida and co-workers,! Packard and Wol-
fram,? and de Arcangelis,® and references therein).
Here we study the spread of a small perturbation,
termed the damage, in a cooperative system—the two-
dimensional Ising model. To do this, we first simulate a
system until it is in equilibrium. Then, at time 1 =0, we
make a replica of this equilibrium configuration, and
create a single spin flip (““initial damage™) in the center
of the replica. Thenceforth, both the original system
(“‘control”) and its damaged repiica evolve by use of
identical dynamics—e.g., the same random numbers are
used for both systems.

As t evolves, our initial single-site damage generally
results in a region of the cooperative system in which the
spins s;(¢) differ in orientation from the corresponding
spins in the control system. We call this region the
“damage,” and measure this damage quantitatively by
counting the number of spins in the perturbed system
that differ from their counterparts in the control system.
We find that sometimes the damage remains localized to
a relatively small region of the lattice, and sometimes it
spreads through the entire cooperative system (since
each spin is interacting with its neighbors). In our com-
parison of the control and its replica, overall averages
—like the net number of up spins or magnetization
— will generally remain unaffected by small initial dam-
age; thus our study concerns microscopic details of a spin
configuration rather than macroscopic averages.

Specifically, our two systems consist of L ? spins situat-
ed on the vertices of a L XL square lattice. Each pair of
neighboring spins has an exchange energy Js;s;, which is
J or —J depending on whether the two spins are orient-
ed parallel or antiparallel. We use two different algo-
rithms: (a) Glauber dynamics, in which we go through
the system like a typewriter, and flip a spin with proba-
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bility exp(—A/T)/lexp(A/T) +exp(—A/T)], where 2A
is the energy difference between the original and the
flipped configurations, and (b) Q2R dynamics, where the
system is scanned in an alternating “chessboard” man-
ner, and a spin is flipped if this flip does not change the
energy.?

We calculate the detailed time development until that
time r =t when the damaged region touches the upper or
lower boundary of the lattice (time is measured in units
of updates per site). At this “touching time” t we calcu-
late the following quantities, all of which depend on L:
(i) M, the actual number of damaged sites at time  =r;
(ii) M, the total number of sites that have been dam-
aged at least once at some time ¢ < 1; and (iii) M, the
number of sites that were damaged for the first time at

=T

We define the critical or “spreading” point 7, to be
that temperature above which a single-spin flip causes
—with nonzero probability—a damage that spreads
indefinitely. At T =T, we propose the asymptotic power
laws M,och’, M,moch““, M,chd" Also, we expect
traeL'* An order parameter y for the spreading phase
transition can be defined as the fraction of damaged sites
if the initially damaged fraction at ¢ =0 is infinitesimally
small,! after taking the average over all starting config-
urations and extrapolating to the limits ¢t —> oo, [ — oo,

Figure 1(a) shows y for different values of 7 (Glauber
method); y approaches zero quite sharply at a tempera-
ture 7 that cannot be reliably distinguished from T..
For Q2R dynamics, y increases smoothly with increasing
energy [Fig. 1(b)], and even at low energies we find
w>0. (The energy at T=T. is E./J = —~/2.) For the
Glauber method, the simulation starts with all spins up,
and so the magnetization at finite times is still positive;
hence, when studying behavior at criticality, we do our
calculations at 7=1.0257, in order to reduce these er-
rors.

Figure 2 shows log-log plots for the averages M, and
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FIG. 1. Dependence of order parameter y on (a) tempera-

ture (Glauber dynamics, 103-10* updates/site) and (b) energy
(Q2R dynamics, 10000 updates/site). In the Glauber case for
the nonzero values of y we took an average over those runs
where y did not vanish.

M for the Q2R model at the Curie point; for large L
these plots approximate straight lines, thus confirming
our scaling assumptions above. Similar results were ob-
tained for Glauber dynamics. The fractal dimensions d.
and d,, cannot be distinguished from the Euclidean di-
mension d. In our averages to calculate the damage at
the critical point we ignore those runs where damage
caused by the single spin flip at z =0 does not touch the
boundaries within the observation time.

There are definite differences between the spreading
behavior for Glauber and Q2R dynamics. These differ-
ences show up in both the low- and high-temperature re-
gions and reveal that the character of the spreading tran-
sition is not the same for the two models we study. In
the Glauber approach we find for 7 <7 that the
amount of damage remains finite. This is understand-
able, since at low temperatures one has only a few isolat-
ed down spins in the sea of up spins and they have a very
short lifetime. If the damaged spin points up, then the
corresponding spin will point up very soon in the control
system. If the damaged spin points down, the damage
will heal within this short lifetime. Multispin events may
change this simple picture, but at sufficiently low tem-
peratures y should vanish in the thermodynamic limit.

For Glauber dynamics, y increases rapidly at 7,.: At
T =0.99T. we found 27, 15, and 10 damaged regions out
of 1000 to touch the boundaries at L =40, 60, and 80,
respectively. For L =100, we found 14 such events out
of 2000. Thus the touching events below T, appear to be
finite-size effects in the Glauber case. Using the plot of
logMyx vs logt, we determined the exponent a in
My<t® For T > T., we obtained a =2 asymptotically,
but for 7=0.997, the slope does not seem to converge to
this value; we get an effective exponent a near 1.2.

Since Q2R dynamics is reversible, such systems can
never “‘heal” entirely. However, the damage can be lo-
calized for very long times; such behavior is reminiscent
of the latent period of a disease. Furthermore, we ob-
serve that the spreading proceeds up to E. often in a
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FIG. 2. Variation with system size of M., actual damage at
touching time 7 (circles), and M, total damage from ¢ =0 up
to =1t (plusses), for Q2R dynamics at the Curie point.

stepwise fashion (Fig. 3) showing that the above mecha-
nism works also in the later stages. Although the micro-
scopic mechanism of the restarting of spreading is not
clear, the migration of clusters of damaged spins must
play a role. For low energies, the damage is not com-
pletely frozen in, but only takes a very long time to
spread—similar to relaxation times in glasses or spin-
glasses. Above E., the spreading occurs much faster
than below E.. For Q2R dynamics, we could not observe
systematic finite-size effects in the survival fraction for

t

FIG. 3. Detailed time development of damaged sites for a
fixed (large) value of L for Q2R dynamics. The two curves
show (for two independent runs, both with 7/7T.=0.95 and
L =500) the stepwise character of the spreading, with long la-
tent periods. (At high energies we find M, 2, as expected.)
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FIG. 4. Average time for al// 1600 sites in a 40 x40 square
lattice to be damaged at least once during the time develop-
ment of the Glauber simulation. Initially only one site is dam-
aged.

low energies, indicating that the damage does not be-
come negligible even for L — oo,

In the high-temperature phase, Q2R dynamics leads to
a rapid spreading of the damage and this seems to be in-
sensitive to the temperature 7. On the other hand, we
have for the 7— oo limit of Glauber dynamics only one
single localized damage because the spins are decoupled.
The behavior of the Glauber model looks clearer if one
studies the average time (7'|) needed to damage every
spin in the sample at least once. This time has a
minimum at about 1.57,, diverges linearly with T for
T — oo, and seems to diverge also for T— T/ (cf. Fig.
4, where we plot 1/(T) against 1/T).

For Glauber dynamics w =0 below the critical temper-
ature for our spreading problem, whereas M =0 above
the critical temperature for magnetic phase transitions.
After submission of this work, we received a preprint
from Derrida and Weisbuch (DW)?> who found, for the
d =3 Glauber model, the opposite result that damage
spreads at /ow temperatures. The reason for this ap-
parent discrepancy is a different way in which the old
orientation of the spin is used to calculate its new orien-
tation: DW “‘orient” the spin and we “flip” the spin.
Specifically, if a random number is smaller than a
Boltzmann factor, DW set s; =1, whereas we flip the
spin. Both algorithms give the same result if only one
lattice is simulated, but for the comparison of two lat-
tices the DW method lets the damage heal quickly at
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high T while our method keeps the initially damaged site
always damaged at 7 =oco. To test these ideas, we used
the DW method for d =2 and found no damage spread
for T/T,=0.8 and 1.2. We did find a nonzero damage
below T, when we started (as did DW) with a random
distribution of spins, and with each spin in one lattice
oriented opposite to the corresponding spin in the other
lattice. Their “final damage” is thus essentially the
magnetization M . The DW method provides another
way to obtain the Curie point, but does not seem to give
new information in the sense of Kauffman’s stability
analysis. The reason for the discrepancy between our re-
sults and those of DW is thus not the difference in di-
mension, since Costa® recently found similar results for
d =3 Glauber dynamics (except that T/T.=0.96).

In summary, we studied the dynamics of spreading
phenomena in a two-dimensional’ cooperative model
with the standard lattice-gas or Ising interaction between
the constituent subunits. The spread of an initial pertur-
bation is studied with two different forms of dynamics.
One difference between the two investigated cases is that
for Glauber dynamics we found a sharp phase transition
while for Q2R dynamics a kinetic effect seems to be
present, analogous to the case of a (spin-) glass transi-
tion.

We wish to thank the Centre Européen de Calcul
Atomique et Moléculaire (CECAM) for sponsoring a
workshop in September 1986, and B. Derrida and
M. Kolb for discussions.

IS. A. Kauffman, J. Theor. Biol. 22, 437 (1969). See also
B. Derrida and Y. Pomeau, Europhys. Lett. 1, 45 (1986);
B. Derrida and G. Weisbuch, J. Phys. (Paris) 47, 1297 (1986);
B. Derrida and D. Stauffer, Europhys. Lett. 2, 739 (1986).

2N. H. Packard and S. Wolfram, J. Stat. Phys. 38, 901
(1985).

3L. de Arcangelis, J. Phys. A 20, L369 (1987), and to be
published.

4G. Vichniac, Physica (Amsterdam) 10D, 96 (1584):
Y. Pomeau, J. Phys. A 17, L415 (1984).

SB. Derrida and G. Weisbuch, Europhys. Lett. 4, 657
(1987).

6U. M. S. Costa, J. Phys. A 20, L583 (1987).

"For d =1, the Q2R model can be solved exactly; we find
that the damage always spreads as 4t +const. For d =3, we
find that the Q2R model behaves similarly to d =2, except that
the broad spreading transition occurs below the Curie point.
For Glauber models in d =3, and also for Kauffman models on
square, triangular, and simple cubic lattices, analogous ques-
tions have been studied (Ref. 3), and could be studied for
numerous other interacting discrete systems.



