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Mass Renormalizations and Superconductivity in Heavy-Fermion UPt3
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The Eliashberg equations for magnetic fluctuations are solved for the case of UPt3. As input, the neu-

tron data of Aeppli et al. are used for the spectral function, and the results of band-structure calcula-
tions are used to model the Fermi surface. The results indicate a mass-renormalization factor of about
16, a value confirmed by comparisons of band calculations to de Haas-van Alphen data. Moreover, a
superconducting transition temperature of the order of 0.1-0.2 K is calculated (due to the momentum
dependence of the susceptibility) with polar gaps in parts of the zone.

PACS numbers: 74.20.—z, 74.70.Tx

The possibility of superconductivity in heavy-fermion
metals due to a nonphonon mechanism has been recog-
nized for some time. ' In the case of UPt3, a normal pho-
non mechanism was proposed. Further work involving
solutions of the Eliashberg equations revealed that for
the parameters appropriate to UPt3, normal supercon-
ductivity is not possible. ' The reason for this is that the
large mass renormalizations have a frequency range
which is much larger than the estimated value of the
critical temperature, and thus strongly suppress the su-

perconductivity, leading to a renormalized critical tem-
perature of the order of 10 K.

There have been several other proposed mechanisms
which might be responsible for the observed supercon-
ductivity which are reviewed by Lee et al. The particu-
lar mechanism focused on here came about when neu-
tron data on UPt3 indicated antiferromagnetic correla-
tions. Two groups showed the possibility of an attrac-
tive superconducting pairing interaction coming from
these correlations. The purpose of this paper is to put
these ideas on a quantitative basis.

We start with the Eliashberg equations for spin fluc-
tuations of Berk and SchrieAer. We look at the normal
self-energy as given in Eq. (2.14) of Stamp'
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where I is the contact interaction, X the susceptibility, f
the Fermi function, n the Bose function, and 28 the
bandwidth. In most cases, X is approximated by the
Lindhard function and a simple sphere is used for the
Fermi surface. This leads to a mass renormalization
which scales as log(S), " where 5 is the Stoner factor,
(1 —IN) ' (N is the density of states). I will not make
that approximation here. Instead, we look at what is

needed to solve this equation realistically. First, one
needs to calculate the full interacting susceptibility. This
is extremely diScult to do, and only recently has been
solved with the use of density-functional techniques for
Pd and V. ' Instead, we note that this is known in a
crude sense from the neutron data. In fact, Aeppli et
al. find that their data are reasonably well fitted with

the following form for the imaginary part of X:
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The ratio of the quasiparticle mass to the band mass at
the Fermi surface is given by 1

—dZ/dz evaluated at
z =0. This is

the equations. I is obtained from 5, which is the ratio of
the experimental susceptibility to the noninteracting
band susceptibility.

We first solve Eq. (1) by ignoring the q dependence of
X and the energy dependence of N. In this case we can
analytically integrate. We solve at zero temperature and
thus ignore n(Q). The frequency integral is of the form
given on page 300 in Gradshteyn and Ryzhik. ' The
remaining energy integral is trivial at T=O, and we ob-
tain

Imz = —X(q)rro/(r'+ co'), (2) m */mq = 1+ 8 I NZ =Z. (4)

where p(q) is the static susceptibility and r is the neu-

tron linewidth (about 5 meV in the case of UPt3). Both
I and N can be extracted from band-structure calcula-
tions. In fact, it is now clear that angle-dependent de
Haas-van Alphen data' on UPt3 predict the same Fer-
mi surface as local-density band-structure calcula-
tions '; thus we know the Fermi surface to input into

We note that the mass renormalization no longer scales
as log(S), but as S itself. In other words, the specific
heat coefficient y scales with X, which is experimentally
observed. ' We note that the linewidth, I, determines
the frequency range over which the mass renormaliza-
tions exist. To test Eq. (4) for UPt3, we note that X(0) is
about 0.26 state/meV, ' and N is about 0.0089
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state/meV from the band calculations. ' This implies
that I is about 109 meV, which yields a mass renormal-
ization factor of 11.3. The neutron data, though, indi-
cate that I peaks at (x/c) (0,0,2) (twice the zone bound-
ary), at which point it is approximately twice the value
at q =0. With use of this value, Z is 21.6. I thus ex-
pect that the average value of Z is about 16.5, which is
what is found when comparing the de Haas-van Alphen
results to band-structure calculations. '

At this point, it would be wise to test another case to
see whether this theory holds. In the case of mixed-
valent CeSn3, de Haas-van Alphen data agree with re-

suits of band-structure calculations modulo a Z of about
5. ' Neutron data ' on CeSn3 indicate a frequency
dependence of Z similar to UPt3 with a linewidth of
about 11 meV. In the case of CeSn3, we have
N =0.0053 state/meV, ' X=0.062 state/meV, ' and thus
I=172 meV. This yields a Z of 4.7, again consistent
with experiment.

Having seen that the observed mass renormalizations
are consistent with self-energy corrections due to mag-
netic fluctuations, we turn to the pairing self-energy.

The pairing equation is given in Ref. 9. With use of a
form given by McMillan, it is

a~(z) = — —I'Q„Re[A~ q(e)]8(e —
ep q)D[n], (5)

where 6 is the gap, ro, a cutofl' energy, and D the same frequency integral as in Eq. (1). The frequency integration is
performed as in the previous section, and we obtain

(6)A~(z) = — I QJ — Reld~ —~(e)]B(e—
e~ ~) tanh

" ~ d~ r'z(q) E

Zp z 8 ~& E r2+ z —e) 2 2kT

To solve the energy integral, I ignore the energy dependence of N (a fairly safe approximation' ), and assume a step
function for the gap, h(co) =d, , ro & co„and zero otherwise. (The latter approximation will be remedied later. ) To in-
tegrate over the energy, I set z =0 and separate the integral into two parts, an integral from 0 to 6T, (where T, is the
critical temperature), and one from 6T, to ro, . In the first integral, we can replace the factor (I +t. ) by I 2 and get
the standard tanh integral. In the second integral, we can replace tanh by 1, and we are left with a standard integral
(see page 69 of Ref. 15). The result is

—I'ln g a~, 8(e —
e~ ~)X(q), (7)

which is our transition-temperature equation (note that
the cutoA' energy drops out approximately). We also see
that since Z scales as I NX, the mass renormalization
drops out for large Z.

It can easily be seen that if L(q) is independent of q,
then Eq. (7) leads to a repulsive contribution to super-
conductivity. It is the q dependence of X which can lead
to an attractive interaction. For the case of UPt3, we
know that Z peaks at (x/c)(0, 0, 2), corresponding to an-
tiferromagnetic correlations between the two equivalent
U atoms in the unit cell. This implies that the gap is an-
tiferromagnetically ordered, which in real space means
that the gap function changes sign from one atom to the
next. '

To solve this problem, we wish to first know what the
gap structure is like at zero temperature. In this case,
tanh =1 and Eq. (6) is easily solved (the integral is from
5 to co, this time) and we obtain
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To go further, we have to perform numerical integrals

over the Fermi surface. The primary contributions to
the density of states in UPt3 are a distorted ellipsoid cen-
tered at I and a disk centered at A which is intercon-
nected to other disks by arms. ' [I is the zone center;
2 is the zone boundary, (x/c)(0, 0, 1).] We thus approx-
imate the Fermi surface by an ellipsoid at I, and a flat-
tened ellipsoid at A. The advantage here is we only have
two Fermi surfaces, and the integrals over the ellipsoids
reduce to one-dimensional form (I assume some average
band mass, mb). We solve Eq. (8) for various forms of
Z, and various values for a and c (a and c are the ellip-
soid radii in the basal and z directions). The adjustment
of a and c reflect attempts to take into account (1) possi-
ble necking between the piece centered at I and a small-
er piece centered at K, and (2) the arms attached to the
9-centered disk. We solve Eq. (8) by a simple iterative
procedure, with a mixing factor of 20% used to stabilize
convergence. For a particular set of parameters, I found
that Eq. (8) converged to the same solution regardless of
the starting values.

To calculate the critical temperature, invert Eq. (7). I
now assume that the ratio of the gaps is independent of
temperature, and substitute Eq. (8) for d, and get

T, =(I /0. 88)exp[ —g b~ qB(E —
e~ ~)Z(q) ln(2I /h~ —~)/g h~ ~8(e —

~~ —q)E(q)].
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TABLE I. Solutions of the Eliashberg equations for various
choices of X(q) and Fermi-surface dimensions. In all cases the
I -centered surface has a line of nodes in the z =0 plane, and
the 8-centered surface has a roughly constant gap, except in
the last case where there are two lines of nodes on the I sur-
face. The first column contains the type of X(q) used (types
listed below the table); the next columns have the Fermi-
surface radii in the basal (z/a units) and z (x/c units) direc-
tions for the I surface (column 2) and the A surface (column
3). In the fourth column, the range of Z over the zone is listed,
and in the fifth column, the estimated superconducting transi-
tion temperature. For the X(q) types, ~

z
~

~ 2 is assumed ex-
cept for the last case. [I consider that the fourth case
(T, =0.15) is probably the most realistic. ]

x(q) '

Type 1

Type 2

Type 2

Type 2

Type 2

Type 3

Type 4
Type 5

I coord.

0.55,0.75
0.55,0.75
0.55,0.75
1.00,0.75
1.00,0.75
0.55,0.75
0.55,0.75
0.55,0.75

2 coord.

0.65,0.15
0.65,0.15
1.00,0.15
1.00,0.15
0.65,0.15
1.00,0.15
1.00,0.15
1.00,0.15

Z range

16.5- 16.5
13.9- 14.5
13.8- 14.5
13.8- 14.4
13.9- 14.3
15.4- 15.6
13.2- 13.8
14.8- 18.2

Tc

0.146
0.102
0.189
0.146
0.080
0.124
0.042
0.339

aType 1, g(q) 1+z/2; type 2, g(q) 1+z /16[(1 —r) +3]; type
3, X(q) 1+z/8[(1 —r) +3]; type 4, X(q) 1+z /8[(1 —r) +1];
type 5, Z(q) 1+z (~ z

~

~ 1).

I assume that the actual T, is the maximum value in Eq.
(9). The anisotropy in Z is taken into account by per-
forming a similar Fermi-surface integral in Eq. (4).

At this point, we might note that for X functions which
depend on r (the distance in the reciprocal basal plane),
there is a p integration which has to be performed ((I) is
the angle in the basal plane). By the assumption of a cy-
lindrical symmetry for X, there is no p dependence in the
gap function; but for the more realistic hexagonal case,
such a dependence is possible. The advantage of assum-
ing cylindrical symmetry is that we can integrate Z
analytically with respect to p, thus keeping the Fermi-
surface integrals in one-dimensional form.

In Table I, the results for various runs are presented.
The predicted transition temperatures are of the order of
0.1-0.2 K, not too far from the experimental value of 0.5
K. ' Moreover, we find a polar gap on the I -centered
surfaces. The 2-centered surfaces have roughly constant
gaps. The reason for the peculiar gap structure lies in
the functional form of X, which drives an antiferromag-
netic structure in the gap. The gaps change sign when
one translates by (x/c)(0, 0,2). The gaps also change
sign when one inverts through the z =0 plane, and thus
the I -centered pieces have lines of nodes, whereas the
2-centered pieces do not. In the case where X is taken to
peak at (x/c)(0, 0, 1), the I -centered surface has two
lines of nodes.

We also see in Table I that the transition temperature

is fairly sensitive to the dimensions of the Fermi surface
and the choice of X. The highest T, is found for that
solution where the density of states is largest on the A-
centered piece. This is easy to understand since that
piece has constant gap, and the angular integrals over
such a gap are not reduced as they are for a polar-gap
case. As for E, the largest transition temperature is for
the case where X is a function of z only. This is easy to
understand since such a X has oscillatory behavior over a
larger region of the zone than in those cases where there
is a dropoff of X with r. We also see that T, is quite sen-
sitive to the degree of r dependence; the larger the drop-
oA with r, the lower the T, . Experimentally, there is a
dropout' with r, but one expects the dropout' to be weak-
er in the r direction than in the z one. Therefore, I feel
that the fourth solution in the table (T, =0.15 K) is the
most realistic one, as it (1) crudely takes into account
the disk arms of the 4 piece and the possible necking be-
tween the I and K pieces, and (2) has a weaker dropoff
with r than with z.

At this point, a discussion of the various approxima-
tions used are in order. The frequency dependence of the
gap has been ignored up to now. The author has iterated
the fourth solution with respect to frequency (approxi-
mately). The result was to replace the factor of 0.88 by
1.1 in Eq. (9). This leads to a T, reduction of about
20%. Next, we used cylindrical symmetry to simplify the
problem. The inclusion of hexagonal symmetry will lead
to a p dependence of the gap. Whether such a depen-
dence will further induce nodes is not known. A more
likely source for inducing nodes is additional structure in

X(q). Certainly, the q dependence is known only crudely
at present. In fact, since we know that Th-doped UPt3
orders with a q vector of (0.5,0, 1) as opposed to the
(0,0,2) vector considered here, it is highly important that
the full q dependence of Z be mapped out. Once this is
known, it will then be worth the eA'ort to put the full
band-structure Fermi surface into the problem. Finally,
the eA'ect of interband matrix elements is probably cru-
cial ~ Reduction of the interband terms by 75% is suf-
ficient to boost the T, of the fourth solution up to 0.5 K.

In summary, using band-structure information and
neutron data, I have been able to show that a supercon-
ducting transition in the temperature range found for
UPt3 can be induced by magnetic fluctuations. The ap-
propriate solutions are derived by solving the resultant
Eliashberg equations, and show polar-type gaps on some
surfaces in the zone. More importantly, this approach is
quite general and provides a quantitative tool for looking
at anisotropic superconductivity in general.
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help in understanding the Fermi surface of UPt3. This
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(Division of Material Sciences, Basic Energy Program)
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