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Stability of the Dense Radial Morphology in Diffusive Pattern Formation
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The dense radial structure is a distinct morphology which develops in many diAusive pattern-forming
systems. We propose the first model to explain the stability of this structure. Stability arises in this
model from the resistivity of the growth channels, which has been neglected in previous analyses. We
also report excellent agreement between the predictions of our model and experimental results from
t wo-dimensional electrochemical deposition.

PACS numbers: 61.50.Cj, 05.40.+j, 64.60.Ak

Patterns form in a wide variety of diftusive systems
driven out of equilibrium. Examples of such systems in-

clude viscous fingering, amorphous annealing, dielectric
breakdown, and electrochemical deposition (ECD). '

In some cases (such as ECD), patterns fall into three
classes: (I ) fractals which resemble the clusters pro-
duced by the diffusion-limited aggregation model, (2)
dendritic crystals with stable tips resembling snowflakes,
and (3) dense radial structures. While progress has
been made in our understanding of the first two mor-
phologies, the dense radial structure has resisted
analysis. In this Letter, we show that the dense radial
structure is stabilized in ECD by the small but nonnegli-
gible electrical resistance of the growing deposits.

The two-dimensional dense radial structure consists of
many rough branches contained within a sharply defined
circular envelope (see Fig. I). These structures are not
fractal, since they fill space uniformly. Nor are they or-
dinary dendritic crystals, since the tips of dense radial
branches are unstable. The circular envelope is not
aflected by the shape of the outer electrode and is re-
markably robust. This is quite unexpected since the
Mullins-Sekerka instability should amplify any fluctua-
tions of the outline. Consequently, the circular envelope
is perhaps the best distinguishing characteristic of the
dense radial morphology.

Dense radial growth was first recognized by Sawa-
da, Dougherty, and Gollub and Grier et al. in two-
dimensional Ohmic ECD. Subsequently, similar pat-
terns were pointed out in viscous flow and amorphous an-
nealing by Ben-Jacob et aI. Ben-Jacob et al. suggest
that this sort of growth arises from the combined eAects
of surface tension and a kinetic term in the boundary
conditions at the moving interface. Linear-stability
analysis based on their model accounts for the number of
branches in a typical pattern, but does not explain the
characteristic stability of the circular envelope in ECD.
In fact, structures arising during amorphous annealing,
to which our analysis does not apply, appear to have
weakly unstable envelopes.

To generate dense radial aggregates, we electrodeposit
metals in a system similar to one previously described.

Our apparatus consists of a layer of aqueous salt solution
0.013 ~ 0.01 cm thick trapped between two plastic
plates. The solution contacts a ring anode of the metal
to be deposited 4.2 cm in radius. A copper wire with a
0.005-cm tip, introduced into the solution at the center
of the ring, serves as the cathode and growth site. When
a potential is applied across the cell, ions in solution
plate onto the cathode to form the aggregate. By vary-
ing the applied potential and the concentration of the
electrolyte, we can drive the system from fractal growth,
through dense radial aggregation, to dendritic growth.
For the purposes of this study, we consider only those
conditions which lead to dense radial growth; see Fig. 1.

During ECD, the flux of ions onto a growing aggre-
gate is controlled by the electrochemical potential

p =A(T)+kTlnc+ze&, where c(r) is the local ionic
concentration, ze is the charge per ion, and N(r) is the
electric potential. Having applied a voltage V across
the cell, we can define the dimensionless diff'usion field
u(x) =p/zeV. The total current (diffusion plus drift) is

given by the gradient of u. In the quasistatic limit, we
have

V j=V u=0.
The boundary condition at the outer electrode is

u(r 1) = I.

(la)

(lb)

where L is the spacing between plates, ro is the radius of
the cathode, and r, is the radius of the aggregate. We

The boundary condition at the surface of the growing
deposit would ordinarily include surface tension through
a Gibbs-Thompson term. However, since the branches
of dense radial aggregates are not connected at the sur-
face, surface tension cannot play a role in large-scale
pattern formation. The only contribution to the bound-
ary condition which we consider arises from the voltage
drop across the aggregate. To estimate the potential at
the surface, we model the pattern as a disk of uniform
efI'ective resistivity pd, with a corresponding total resis-
tance given by

R (r, ) = (pd /2trL ) ln (r, /r 0 ),
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in the metal.
Finally, the interfacial velocity is given by continuity

of current:

t. =(ap, ) '(t)u/r)r)
~ „

where p, is the resistivity of the electrolyte.
The steady-state solution for a circular interface devel-

oping under boundary conditions (1) is a circle advanc-
ing with velocity

0 r, r]
t. o (r,.) =—pd ln —+p, 1n (2)

r, rp r2

Following the analysis of Mullins and Sekerka, we ex-
amine the stability of this solution against a perturbation

r, (t, O) =r, (t)+6 (t)cos(mO)

We find for the instantaneous rate of growth of the per-
turbation, a = (6 /6 )r, /t, o,

(a) X 2m Xa =m(1 —P) +mPln
1 + 2117 Xp

(4)

C3
V)

DLA

DENDR I T ES

Here, x =r, /ro & 1, xp=r~/ro, and p=pd/p, is the ratio
of the resistivity of the deposit to that of the electrolyte.
When p is su%ciently large, a is negative for small m
so that a circular profile will not develop the large-scale
instabilities typical of fractal growth and will remain cir-
cular. The kinetic boundary condition introduced by
Ben-Jacob et al. to explain dense radial growth lacks
the spatial dependence of (lc) and thus fails to provide
the necessary stabilization. The minimum condition for
circular stability is e2=0. This puts a lower bound on
the resistivity of an aggregate necessary for dense
growth:
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FIG. l. (a) Zinc dense radial electrodeposit. Grown from

0.03M ZnSO4 (aq) with an applied potential of 10.01 V. (b)
Selected pattern as a function of applied voltage and molar
concentration of ZnSO4. Similar transitions are also observed
in electrodeposition of copper, silver, cadmium, and lead.

u (r, ) = apd r, In (r, /r o )c,

where a=zend/V and nd is the number density of atoms

(1c)

assume that the current flow within the aggregate is al-
ways constrained to flow strictly radially by the filamen-
tary branches of the aggregate. This nonlinear con-
straint imposed by the complex disconnected geometry of
the dense radial pattern is essential for stabilization of
the interface. The current density at the surface of the
aggregate is related to the interfacial velocity by
j =zendv, so that the potential at the interface is

P;„=[I+in(1/x, )]

In general, p;„&1, so that even a relatively good con-
ductor can form dense radial aggregates.

If the dense radial pattern were in fact solid, so that
currents could flow azimuthally, the situation would map
onto that of Hele-Shaw flow with finite viscosity con-
trast, P. In this case the pattern is unstable unless P & 1.
For many systems such as ECD, p & 1 and stability only
arises because of the detailed structure of the pattern.

Equation (4) applies directly to the case of two-
dimensional dielectric breakdown where P accounts for
the resistivity of the breakdown channels. Our theory
may therefore explain the radially symmetric patterns
with fractal dimension D = 2 observed by Niemeyer,
Pietronero, and Weismann in two-dimensional gas dis-
charges.

We have noted elsewhere' that, in practice, dense
radial electrodeposits only develop when the diA'usion

length in the system is considerably smaller than the ra-
dius of the cell. The above analysis holds only in the
quasistatic limit. We now show that for short diffusion
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(6a)

The boundary condition u(r ~) =1 must be applied far in

front of the advancing plane

u(r, +nk) =1, (6b)

where n&& 1 and r, is the position of the plane. The
boundary conditions at the moving interface are, as be-
fore,

u(r, ) =crpdr, v,

v =(crp, ) '(riu/dr)
~ „

(6c)

(6d)

where p, is now to be expressed in terms of D by the
Nernst-Einstein relation. In (6c) we have absorbed the
logarithm of (lc) into pd.

Zener' has given a solution to (6) for the case u(r, )
=u, =const:

lengths, resistance can still lead to stability even if P does
not satisfy (5).

The diftusion length is given by X =D/v, where D is
the diffusion coefficient and v the tip velocity. k mea-
sures the distance over which the electrochemical poten-
tial is affected by the growing deposit and correlations
between growing regions separated by distances greater
than X are suppressed. In the limit X«r~ (our measure-
ments' give X (0.1 cm whenever dense radial growth
occurs), the scale invariance characteristic of fractals
cannot arise. " Short diffusion lengths can therefore ex-
plain the observed uniform areal density of the aggre-
gates, although they do not lead to stable circular en-
velopes by themselves.

In the short-diffusion-length limit, the electrochemi-
cal potential approximately' satisfies the diffusion equa-
tion instead of the Laplace equation,

DV u =clu/cit

where q satisfies

q
—q/X —k =0. (101 )

In the limit of short diA'usion lengths, (10) shows that
the flat profile of the advancing plane is stable for all
wave numbers smaller than k, given by

k, X =[p ' —1] (I la)

We can approximate the corresponding stability condi-
tion in the circular growth case by

foal~
=k~l'~. (1 1 b)

The condition for stabilization of the circular envelope,
m, ~ 2, determines the minimum resistivity sufficient for
dense radial growth,

P.;.(~) = [I+(r, /2~) '] (1 lc)

i o/i (r, ) = (1 —P ) ln (r 1/r, ) +P ln (r ~/r o), (12)

Short diffusion lengths enhance the stabilizing effect of a
deposit's resistivity.

One result of (11) is that the planar solution is always
unstable for p ( 1 in the long-dift'usion-length limit. In
this limit, however, the planar geometry is not a good
representation for our two-dimensional system. Under
these conditions, when X & r~, (4) must be used instead.
The additional stabilization in the radial case arises from
the I/r dependence of the current density which is not
present in the planar case.

The condition for stable dense radial growth set by
(1 lc) is observed to be met by all dense radial aggre-
gates grown by ECD. To apply our result to ECD, we
have experimentally determined p from the deposition
current, i (r, ), by applying the relation

(u, —1)e(x/(Dt) '")
u(r) =1+

e(z) =J exp( —x'/4) dx.
Z

This solution corresponds to a plane advancing with

r, =g(Dt) '".

(7a)

(7b)

(7c)

Note that in our case we also have u, =const because

u(r, ) = crpd g'D/2.

This implies, with use of (6d), a self-consistency relation
for g:

2(1 —u, ) =Dcrp, j&(g) exp(g /4). (Sb)

We apply a perturbation of wave number k to the in-
terface after having let it grow to size r, = g(Dto) 't:

1

0

ln(Ro/R)

r, (t) =r, +8k(t)e'"'.

The rate of growth of the perturbation is

a, =qr, [(I —P) —I/qX] [I+qr, P] (1oa)

FIG. 2. Deposition current vs radius of aggregate plotted
according to Eq. (12). Experimental error bars are too small
to be seen at the resolution of the graph. This run produced
the aggregate shown in Fig. 1. A linear least-squares fit to the
data indicates P =0.132.
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short-diffusion-length limit. We suggest that if either of
these conditions is met, then the dense radial pattern
should emerge.
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FIG. 3. Rate of growth of perturbations vs mode number m,
for P =0.132 and l =0.008 cm.

where io=2rrLV/p, . We have estimated p, and D from
standard tables and have checked these values by mea-
surement. ' Figure 2 sho~s data from the experimental
run which produced the deposit in Fig. 1. The excellent
fit to the data by (12) supports the assumed logarithmic
dependence of the resistance of the deposit; the slope of
the fitted line gives P=0.132. Under the conditions of
this run (0.03M ZnSO4, 10.01 V), the diA'usion length is
measured' to be 0.008 cm at r, =1.0 cm, and (1 lc)
gives p;„=0.0003. Because p) p;„,the aggregate is

sufficiently resistive to be stabilized by our mechanism.
The measured resistance is orders of magnitude greater
than the volume-fraction-weighted resistance of the bulk
metal because the current-carrying filaments have cross-
sectional areas of only =0.01 pm as determined by
scanning electron microscopy examination. In Fig. 3 we

plot the growth rate a, calculated with the measured
value of p. For small m, a is indeed negative, in agree-
ment with the observation that the envelope in Fig. 1 is
circular to within 5% for m & 20. ' We obtain similar
agreement with theory over the entire range of experi-
mental conditions, as well as in other metals, including
copper, cadmium, silver, and lead.

These observations suggest that the dense radial mor-
phology arises in ECD from the resistivity of the growth
channels. For two-dimensional diAusive growth, our
theory predicts that a circular envelope will be stable if
the relative resistivity of the growth channels exceeds
p;„.This threshold value is given by (5) for systems
governed by the Laplace equation, and by (11) in the
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