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Dimensionality Crossover in Superconducting Wire Networks
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We have fabricated wire networks in the form of triangular arrays of third-order Sierpinski gaskets
and percolation arrays on square lattices. For the gaskets the superconducting phase boundary, T, (H),
exhibits a clear crossover between the homogeneous and inhomogeneous (fractal) regimes. This is for-
mally equivalent to the phonon-fracton crossover. Surprisingly, the random, square-lattice percolation
networks, which are expected to exhibit a similar crossover, seem to behave in a manner characteristic of
two-dimensional systems, independent of length scale.

PACS numbers: 64.60.Ak, 73.60.Ka, 74.60.Ec

The study of disorder in superconductors has been
pursued in a number of ways in recent years. Strongly
disordered superconductors have been modeled as weakly
coupled grains of clean material with the disorder
parametrized by the strength of this coupling. ' This
picture has been used to explain the sudden disappear-
ance of superconductivity in ultrathin films at a universal
value of the sheet resistance, R =h/4e =6.1 kQ. ' A
second approach introduces disorder microscopically
and is useful when one is describing homogeneous sam-
ples such as amorphous alloys. Although T, is
depressed by the disorder, no universal behavior con-
trolled by R is expected. In a third model of disordered
systems, geometric inhomogeneities occur over a range
of length scales. Systems treated with this model include
insoluble metal-insulator mixtures such as Al-Ge, ' and
most thin films, which grow percolatively in two dimen-
sions.

A wide variety of disordered systems, in addition to
superconducting films, are expected to exhibit overall
percolative structure. Examples include glasses and pos-
sibly all amorphous systems. In the last few years a
great deal of progress has been made in the understand-
ing of geometric disorder, due in part to the description
of percolation in terms of fractal geometry. Wire net-
works are particularly useful models for observing the
eft'ects of inhomogeneity, since superconducting proper-
ties are quite sensitive to dimensionality. '

To date, studies of wire networks have concentrated on
pure fractal geometries, ' and periodic ' ' and quasi-
periodic' lattices. Here we study triangular arrays of
Sierpinski gaskets (SG) which, like naturally occurring
examples of percolation, exhibit both fractal and 20 re-
gimes. We find that these arrays exhibit a crossover as
the appropriate probe length, g„is varied from g, ( g~
to g, ) g~ (gz is the correlation length). We contrast the

behavior of the gasket arrays with measurements on ran-
dom, percolation networks, which are also fractal at
short length scales. Surprisingly, these seem to exhibit
two-dimensional behavior well into the inhomogeneous
regime.

The samples were prepared by evaporation of pure Al
films onto oxidized Si substrates. The films, 50 nm
thick, were deposited directly onto the substrates through
a liftofI' mask written in two-layer electron-beam resist
by a Cambridge model EBMF-2-150 electron beam mi-
crofabricator. The gaskets are of third order and in all
other respects are identical to those reported upon ear-
lier. ' Each gasket sits on a site of a 100x100 triangu-
lar lattice (Fig. 1). The percolation networks are formed
from an 800x 800 square lattice of wire bonds which are
present with probability p (missing with probability
1 —p) (Fig. 2). For both sample types the wire widths
are approximately 0.3 pm and the lattice size is
a(SG) =a(pere) =1.7 pm. The normal-state resistance
of the samples was between 1 and 100 0, awhile the su-
perconducting coherence length in all samples was

g, (0) =0.22 pm, determined by the large-field (Ha 2=y) po), 1D phase boundary. '
We begin an analysis of the superconducting phase

boundary by considering the two-dimensional (2D), or
homogeneous, case. To emphasize its definition as a
difTusion length, the superconducting coherence length
may be written

&,'(T) =DroL(T),

where rGL(T) =(nh/8ka)(T, —T) ' is the Ginzburg-
Landau lifetime for the Cooper pairs and D is the
dift'usivity. Substitution of (1) into the definition of the
perpendicular critical field, H 2 =lto/2ng„ immediately
yields H, (T)2=(4kac/neD)(T, —T) which is the usual
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FIG. l. Phase boundaries of the SG array (solid curve) and
the pure SG (dashed curve). The straight lines have slope
m = 1 for the gasket array and m = 1.161 for the SG. A sec-
tion of the array is shown in the inset. An arrow marks the
point where L(H) =(~.

H (G)

FIG. 2. Phase boundary of the p =0.56 percolation network.
The points are data and the solid line is a regression fit with
slope of 1.00. The network is pictured in the inset.

result for the phase boundary of 2D films near T, . In
the one-dimensional case, where both the width and
thickness of the superconductor are less than g, (i. e.,
where W, d & g, &L), this result must be modified by
the exchanging of g, (T)W/412 for g, (T) in the defi-
nition of H, 2 'From the ex.pressions for T, (H) in one
and two dimensions, we note that the power-law expo-
nent relating T, and H is dependent upon dimension:

(2)

2) r
D//~

r 1/(1+ e/2)
s (3)

In order to extend (2) to fractal dimensions it is neces-
sary to discuss the eAect of fractal geometry on the su-
perconducting coherence length. The homogeneous case
is defined by the inequality g, (T) & g~, where g~ is the
correlation length or the size of the fractal regions on the
network. In this regime the superconducting order pa-
rameter varies only over distances greater than g~ and
diff'usion properties follow the usual Euclidean laws.
Specifically, g, (T)—DrGL(T) —(T —T, ) '. In the
case of the SG array, the correlation length is identified
with the size of the third-order gaskets, or L3 =2 a =8a,
while for the percolation model the correlation length is
less intuitive and is found to be (z =a(p —p, ) ', where
v 3 is the correlation-length exponent.

Below T, the coherence length decreases as hT,
and at a sufficiently low temperature one enters the inho-
mogeneous region where a & (,(T) & gz. Both simula-
tions' and analytical theories' of diffusion on fractals
indicate that normal diAusive behavior is replaced by an
anomalous process obeying the following power law:

where Df is the fractal dimension and d is the fracton
(or spectral) dimension. The second expression in (3)
makes use of the relationship between Df and d, defining
the anomalous diA'usion exponent, 8, where D —L
The eA'ect of (3) is to decrease the coherence length via a
"slower" diffusion mechanism, g, —rr'/t '+ /, and to
alter the relationship between H and AT, in (2). The
phase boundary now has the form AT, -H'+

At very small values of AT, (equivalently, small fields)
we expect a linear relationship between h, T, and H. A
crossover to the inhomogeneous regime is expected at the
point where g, (T)=L(H)=(~." For the SG, 8
=0.322, ' while on the infinite cluster 8=0.8. '

A related consequence of the fractal "disorder" at
short length scales is the enhancement of H, 2 as p ap-
proaches p, . (In our percolation networks it was possible
to vary p and thus gz. ) Using (1) and (3) one can calcu-
late the enhancement in H, 2(p & 1) over H, 2 in the
periodic network at the temperature where j, =g~. It
follows that (in the homogeneous regime) the slope of
the critical field will depend upon Ap =p —p, as

ldH, p/d T] r —&p (4)

where k =ve. Taking v= —', and B(pere) =0.8 we find
k =1.06, in good agreement with recent numerical simu-
lations by Simonen and Lopez' who found k =0.93. Of
course, when g~ & g, we should expect no dependence of
HL2 on p.

For purposes of investigating large-scale dimensionali-
ty, the most significant feature of hT, (H) is its form at
low fields (i.e. , p/po«1). We have shown above that
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Another test of the "dimensionality" of the percolation
network is the magnitude of the critical field. Toward
these ends it is convenient to discuss the quantity
dH, 2//dT. In order to compare our data with the simula-
tion of Ref. 19, we define a parameter 4 which is propor-
tional to the derivative dH, 2/dT:

(5)

0.0 and thus

2 = jg (0)T,//pl [dH, 2/dT]T. (6)
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FIG. 3. Plot of A —dH, 2/dT vs p —p, .

in fractal networks —or in the inhomogeneous regime—one expects power-law behavior of the form AT, —H
where m = I+6/2 & 1. Here, m is an exponent charac-
teristic of diffusion on the fractal. This power-law be-
havior has been confirmed in experiments on pure frac-
tals (SG with 6=0.322) ' and periodic networks. ' '

Figure 1 shows the phase boundary of the gasket array
over a range of fields defined by the inequality 10
G & H & 10 G. Using the length scale L (H) =(4/J3)
&& (pp/H), we find that L spans the crossover region, ex-
tending from L(10 G) =100a & g~ =8a to the inho-
mogeneous regime where g, (0) & L(10 G) =a & gz
(L(H) is the length of the side of a triangle which con-
tains one quantum of flux, pp]. In the inhomogeneous
regime the phase boundary is identical to that of a pure
SG'p (Fig. 1). At still smaller fields, specifically for a
probe length, L(H), greater than g~, AT, (H) is larger in

the array than in the pure fractal. This is due to a cross-
over to the homogeneous regime where diftusion is
"faster" and where g, (T) grows linearly with roL.

It is possible to estimate the behavior of the critical
field of the n =3 order gasket array (in the homogeneous
regime) by noting that the transition temperature will

vary linearly in the field, AT, =H. Further, as we have
noted earlier, the crossover should occur at about
L(H) =(~. These criteria define the straight line
marked in Fig. 1. The magnitude and slope of the data
are consistent with this prediction, although the homo-
geneous region covers less than a decade in temperature.

It is natural to expect comparable behavior for the
percolation networks. In fact, for our samples the corre-
lation length is quite long, bounded below by
& gp6=a(0. 6 —p, ) '=37 pm. Thus, over most of our
range of field and temperature we expect to observe in-
homogeneous behavior (i.e., m = I+6/2). It is surpris-
ing, then, that we find only values of m =1.00 ~0.03 for
all our values of p (0.54, 0.56, 0.60, and 1.0) and
H«gp/a . An example is shown in Fig. 2.2'

In Fig. 3 we have plotted 4 as a function of Ap, on loga-
rithmic axes. A appears to vary with p for even our
smallest values of Ap. This is consistent with our earlier
observations suggesting that the samples are in the
homogeneous regime, where 2 is expected to fall off' as
Ap . The straight line in Fig. 3 has a slope of
k =v6=1.06, indicating that these data are in good
agreement with our expectation, (4).

We have fabricated two different networks which are
models for percolative disorder, relevant to the growth of
real, superconducting films. Our networks focus on the
inhomogeneous nature of percolating films and measure-
ments of the phase boundary in a magnetic field are ex-
pected to reAect this. The two sample types are logically
intermediate between pure fractal networks and periodic
networks, both of which have been studied previously.
The SG network combines a well-understood fractal at
short length scales with a periodic structure over large
distances. The percolation networks add randomness
and dead-end bonds in an attempt at a more sophisticat-
ed representation of real, percolating systems.

For the SG array, AT, (H) data show a distinct cross-
over from fractal to 2D behavior. The critical field (in
the homogeneous region) is smaller in the (n =3) gasket
array than in the pure fractal, consistent with our con-
cept of the eA'ects of disorder on H, 2.

The superconducting properties of random, percolat-
ing networks are much more di%cult to predict, despite
geometric similarities with the SG array. The phase
boundary, AT, -H', and the dependence of A on p are
strong evidence that the percolation networks are, in

some sense, homogeneous at all measured p and H. This
is in contradiction with expectations based on the calcu-
lated values of gz. This may be due to the complicated
structure of the percolation fractal as opposed to the SG.
On the one hand, the percolation networks are random,
washing out structure in AT, (H) at small fields (com-
pare Fig. 1 with Fig. 2). In addition, the presence of
dangling bonds has been shown to aftect the transition
temperature of single loops in a magnetic field. ' Final-
ly, in the presence of a finite magnetic field it may be
necessary to treat this as a problem in quantum (not
classical) percolation. ' Although much is under-
stood about the geometry of inhomogeneous films, it is
clear that the superconducting properties are not yet
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solved.
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