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We measure the response of the quark number to an infinitesimal chemical potential in high-
temperature QCD with two light flavors of dynamical fermions. In the chirally symmetric phase the sus-
ceptibilities for quark-number density and for the density of the third component of isospin are large and
equal within statistics, which is consistent with a plasma of light quarks. In the broken-symmetry phase
the susceptibility for quark-number density is small, as expected from quark confinement.
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The behavior of quantum chromodynamics at high
temperature is of fundamental and possible experimental
interest. Numerical simulations have shown that QCD
with light quarks experiences a restoration of chiral sym-

metry as the temperature is raised, ' with a transition
temperature in the range from 100 to 160 MeV. The
restoration of chiral symmetry is signaled by the vanish-

ing of iItiy as the quark mass goes to zero. Beyond this
our knowledge of the nature of high-temperature QCD is
scant. The high-temperature phase is referred to as the
"plasma" phase, and is sometimes pictured as a weakly
interacting gas of quarks and gluons. For temperatures
slightly above the transition temperature, this picture is

clearly simplistic. The QCD coupling is not small at this
energy scale. Measurements of the energy and pressure
of the plasma show a large energy density in the high-
temperature phase similar to a Stefan-Boltzmann law on
a lattice. However, slightly above the transition tem-

perature the pressure is small, in contrast to P =
3 E ex-

pected for a relativistic gas. It has been suggested that
the long-distance behavior of the high-temperature phase
is characterized by the propagation of color-singlet ob-
jects, just as in the more familiar low-temperature phase.

One available probe of the physics of the plasma is the

study of screening lengths. Here one measures the
propagator from a quark-antiquark or a three-quark
source in a spatial direction on the high-temperature lat-
tice. Screening lengths so measured show the parity
doubling expected when chiral symmetry is restored. In
particular, the nucleon and its opposite-parity partner
have equal screening lengths, with inverse screening
length comparable to their low-temperature masses.

Here we report a measurement of another set of
probes of the plasma, the susceptibility of the quark-
number density to changes in the chemical potential. The

singlet susceptibility Zs and nonsinglet susceptibility E~s
are defined as

Z, » ——(a/al. „a/al d)(n„nd).
Xs measures the response of the total quark-number den-

sity to change in the chemical potential, while XNs mea-
sures the response of the third component of the isospin
density. (We work with two flavors of equal-mass
quarks in this paper, but the formalism is easily general-
ized. ) Here n„and nd are the expectation values of the
number densities of up and down quarks, and p„and pd
are the corresponding chemical potentials.

(V ), alnZ

Pu, d

where Z is the partition function, V, is the spatial
volume, and P is the inverse temperature.

These susceptibilities can be measured in a standard
simulation of QCD at zero chemical potential. For the
purpose of orientation, consider a gas of free quarks.
For low quark masses, both Zs and XNs are expected to
be large, since it will be relatively easy to create an addi-
tional quark or antiquark. For example, in the continu-
um limit if the quark mass m is much less than the tem-
perature T then Zs N~T, where Nf is the number of
quark Aavors. In contrast, if the quarks are massive,
then Zs is suppressed by a factor of exp( —rtt/T). As
noted above, the plasma is strongly interacting and the
excitations are unlikely to be free particles of any mass,
but these limiting cases illustrate the nature of this probe
of the plasma. In the phase in which the chiral symme-
try is broken, Xs is expected to be small since quarks are
confined and the only states with nonzero quark number
have large masses. However, if the lowest mass excita-
tion in this phase is an isospin-1 pion, then XNs will be
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diAerent from zero, and will increase with decreasing
pion mass.

In the continuum, the partition function for two
flavors of quarks has the form

Z =„[6Uje ' detM„(U, p„)detMd(U, pd) (3).

S~ is the action for the pure gauge theory, U is the gauge

tl„d = ( V, p) '(Tr [M„d' BM„d/6 p „dl ) v (4)

(. . . )v denotes averaging over the gauge configurations
weighted as in Eq. (3). The susceptibilities are then
given by

field, and M„d are the fermion matrices for the up and
down quarks. Then Eq. (2) can be rewritten as

6'M; 1 t)M; 1 6M;
&s,Ns= —Tr', + Tr + Tr~

V,P, M; t)p,' M; tip; M; tip, t v V,P

&My

)
1 6M„ 1Tr~ '+ TI

V p M„gp„Md
BMy

)z
Bpd v

(s)

where the plus signs are for Zp and the minus signs for XNs. The indices i and j take on the values u and d. The first
term in Eq. (5) has been retained because in the lattice formulation of the theory it is essential that the fermion matrix
be nonlinear in the chemical potential in order to obtain finite results in the limit of zero lattice spacing. ' For the lat-
tice version of the theory, we use staggered fermions and write the eA'ective action as

S,tr =Sw(U) + (Nf/4)Tr lnM(U, p). (6)
U is now a set of SU(3) matrices associated with the links of the lattice and Sw(U) is the standard Wilson action. For
Af =2, this action describes two flavors of equal-mass quarks at the same chemical potential. M is given by

M(U); ~ =2ma6; 1+ g rI; „[U;,8; ~
„—U; , ,—8;,+,—]+tl;,[U;,e '"8; )—,—U;, , e '"8; ~+, ]

v =x,y, z

(7)

Here a& is the temporal lattice spacing and g is the standard staggered fermion phase factor. The prescription for in-
cluding the chemical potential in the lattice theory has been discussed by several authors. ' " The constraint on the
prescription derived by Gavai' from finiteness of the energy density for finite p is particularly important, since this
condition is also necessary for the finiteness of the susceptibility.

The expressions for the susceptibilities become

1

V, P

1 M 1 M 1 M (8)

*-= ', :("-' '.„').-("-' '. -' '. ).
The fourth term in Eq. (8) is zero at p =0. The first terms in Eqs. (8) and (9) appear because p enters nonlinearly in

M. The presence of these terms is essential to obtain finite results in the continuum limit as they contain divergences
that cancel against corresponding ones in the second terms. This can be seen explicitly by our computing the suscepti-
bilities for the free theory (U= 1) at zero temperature, where the first and second terms cancel identically. The third
term in Eq. (8), which involves two traces, is zero in the free field theory and at zero temperature in the interacting
theory. At finite temperature in the interacting theory, it can be seen from a hopping-parameter expansion that for a
given configuration of the gauge variables Tr(1/M)t)M/Bp is pure imaginary, receiving contributions only from loops
which wind around the lattice in the Euclidean time direction. Therefore the third term makes a negative contribution
to Xs.

Details of the simulation method are given by Gottlieb et al. ' It is too costly in computer time to obtain the full in-

verse of M which is needed to evaluate the traces in Eqs. (8) and (9) exactly. Instead we replace these traces by un-

biased estimators, by introducing a set of L Gaussian-distributed random vectors, R;, and evaluating

V,P 4 M tip 2 v, R 4 L M tip M Bp
' 2

(10)
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and

a'M . 1 gM 1 aM
V,P 4 M (lp2 U. & M (lp M Bp

'
U, &

R

1 BM
M dp

aM
TI

M a~

the variance of the estimate is proportional to 1/L .
Our lattice size is 8 x4. Lattices as small as this have

large eA'ects from the finite lattice spacing. ' We have
therefore evaluated the quark-number susceptibility for
two flavors of free quarks with various masses on an
83X4 lattice. For example, on the 8 &&4 lattice (T= 4 )
we find Zs =ZNs =0.291 for free massless quarks, in con-
trast to the continuum value of 0.125.

8 x4

0.2—

where we now average over both the gauge
configurations, U, and the random vectors R. The aver-
age over the R; recovers the traces in Eqs. (8) and (9).
The 1/L correction in the second term of Eq. (10) com-
pensates for the unwanted contraction in the diagonal
elements of the sum in the third term. The reason for
our using several random vectors in the third term,
which contains two traces, is that the variance of this
term is many times larger than the variance of the terms
containing only one trace. It is advantageous to use
several random vectors to estimate it. For

—2

Our numerical results are presented in Figs. 1-3. In
Fig. 1 we show data for Zs for a quark mass of 0.05. In
the broken-symmetry phase Xs is consistent with zero, as
one would expect for confined quarks. The sharp rise in

Zs as 6/g is increased through its critical value indicates
that the fundamental excitations in the symmetric phase
carry small free energy. In Fig. 2 we show similar data
for XNs. The nonsinglet susceptibility need not be small
in the broken-symmetry phase since it measures the ease
of addition of an isospin-1 pion to the system. The fact
that ZNs approaches approximately the same limit as Xs
in the symmetric phase is consistent with the fundamen-
tal excitations in this phase being light mass quarks and
antiquarks. These masses are significantly smaller than
the masses characterizing the spatial screening of color-
singlet sources. ' The crossover of Zs and ZNs tracks the
crossover of Iffy for this mass which is plotted in Fig. 9 of
Ref. 5.

The large error bars for Ls in the broken-symmetry
phase result from fluctuations in the two-trace term of
Eq. (10). We plot this term, which forms the difference
between Xs and XNs, in Fig. 3. This diAerence represents
the oA'-diagonal susceptibility, or the response of the d-
quark density to the u-quark chemical potential.

It will be interesting to extend our measurements to
lighter quark masses. The pion mass will decrease with
the quark mass. So for small values of the quark mass
and T & T~, one expects ZN~ to be larger than Xs. Work

~ continuum
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FIG. 1. Zs as a function of 6/g for quark mass of 0.05.
Horizontal arrows label the values of Xs for two flavors of free
quarks of this mass on an 8 x4 lattice and in the continuum.
Vertical arrows indicate our earlier estimates of the values of
6/g at which the high-temperature crossover occurs for Nr =4
and 6. This may be interpreted as the crossover temperature
and 1.5 times the crossover temperature.
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FIG. 2. ZNs as a function of 6/g' for quark mass of 0.05.
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in this direction is in progress.
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FIG. 3. Xs —XNs as a function of 6/g for quark mass of
0.05. This quantity is the two-trace term in Eq. (10).
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