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Lattice Theory of Crystal Surface Melting
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We have developed a lattice theory capable of providing, within certain mean-field restrictions, a real-
istic description of the surface-initiated melting taking place at a low-index crystal-vapor interface near
the bulk triple-point temperature Tst Direct . application is presented to the (100) and (110) surfaces of
an fcc Lennard-Jones crystal. A quasiliquid layer of thickness growing like (T —T) 'I is found, in

good qualitative agreement with recent experiments on Ar films.

PACS numbers: 68.35.Rh, 64.70.Dv

The idea that when a liquid wets the surface of its own
solid phase then crystal melting might be a surface-
initiated process is very old, and much macroscopic evi-
dence has been accumulated over the years by the chem-
ical physicists. Recent microscopic studies indicate the
formation very close to the triple-point temperature TM
of what is plausibly a "quasiliquid" layer. By that,
we mean a very thin film, inside which the single-particle
density and surface corrugation may still be influenced
by the underlying bulk crystal, but where the average
density p, the pair correlation function, and the diA'usion

coefficient are essentially those of the unperturbed bulk
liquid, as it would appear just above TM. While phe-
nomenological and other simplified descriptions of this
phenomenon are available, ' it is hard to tackle it
theoretically, both by conventional microscopic theory
and by simulation (whose results are still somewhat con-
troversial"' ). Some aspects of surface melting are
common to the simpler problem of wetting of a hard

wall, whose theory is discussed. However, it is not real-
ly clear how to extend these theories, and a fresh micro-
scopic start seems necessary. Microscopically, one needs
for a start a simple and accurate bulk theory. It should
account for the phase diagram including solid, liquid,
and vapor phases, the triple point, and the critical point
of a true substance. The theory should then be general-
ized to describe the solid-gas interface near TM. This
program has never been implemented so far. None of the
existing approaches calculates a surface free energy, or a
density profile across the surface, or the propagation of
crystalline ordering across the quasiliquid film. The gra-
dual evolution from a compact, flat, warm crystal surface
with just a few vacancies to a quasiliquid film remains to
be understood in all details. In this Letter we present a
new attack to this problem, capable of providing a first
answer to at least some of these questions.

We divide the volume V of a system of N atoms into E
cells of a simple regular lattice (N (K) The grand.
partition function is

exp —p —,
' gp;p~U(r;, r~) —ItN d r~ d rtv,

where U(r;, rI) is a pairwise interaction, p=(kaT) is the inverse temperature, p is the chemical potential, and p; is
zero if the site is empty and unity otherwise. If the volume vo = V/K of each cell is small, we can neglect the possibility
of multiple occupancy of a cell. The summation pl~, l is taken over all possible configurations of N atoms on K sites. In
the free-volume approximation' Q is replaced by the product of a discrete Ising-type lattice model term Z and a free-
volume term Q,

N

g.=
Uk=1 g exp —P —,

'
gp;AU;~ pN—

fp, 1

=AZ,

where t. k defines a "free volume" for atom k,
U~ =U(R;, RJ), and R; denotes a cell site. Our refer-
ence lattice consists of two fcc sublattices, labeled 0 and
1. By our choosing the cell size to be I/J2 times the op-
timal interparticle separation, one of the sublattices is
nearly filled in the solid phase, and the other nearly emp-
ty. We call the imbalance c =((po& —(pt&)/((pp&+(pt&)
the "crystallinity" order parameter. In the liquid and in

the gas phases both sublattices are equally populated

!
(c =0). Mori, Okamoto, and Isa' have applied this
scheme to bulk melting by treating the Ising system in
mean-field approximation and crudely setting 0 =1. In
spite of its crudeness this scheme describes fairly well the
triple-point behavior of the Lennard-Jones (LJ) sys-
tern. ' We have modified this procedure for an inhomo-
geneous situation, like the solid-vapor interface. Our
system consists of a simple cubic reference lattice, whose
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layers, labeled l, are parallel to the interface. Within
mean-field theory (no fluctuations) each layer has a con-
stant density p&, as well as a constant crystallinity cI.
Both Z and 0 are functional of [pt, ctj.

For the inhomogeneous Ising problem we take the
mean-field evaluation

Z =g exp —P —,
' g (p;tp t.)U;i —pN

where p;I denotes the occupancy of site i in layer l and
g=g[pt, ctj is a combinatorial factor which accounts for
the multiplicity of the saddle-point configuration. We
take (pip~i, ) =0 if il is first neighbor of jl' or equal to
(pt')(pt') for second and further neighbors. Moreover,
(pt') =v, pt[1+ ( —1) 'ct], with v=p denoting one sublat-
tice, and v =1 the other. Occupancy of nearest-neighbor
sites is extremely unlikely and is excluded.

Finally,

Z =gexp» P pN —
—,
'

Novo gptpt+m g [1+(—1)"ctct+ ]z (k)Ut,
Im k=2

where z (k) is the number of kth neighbor sites (interactions Ut, ) for a given site m layers away, No is the number of
the lattice sites in every layer, and N=voNogt pt. The combinatorial factor g, calculated by extension of Takagi s

method, ' is

1

lng= —,
'

No g g[[z (1)—1][h((p t)) +h(1 —(pt'))] —z (1)[h((p t)) +6 o„h(1 —(pt') —(pt"+'))]j,
v=O Im

!
where h (x) —=x ln(x).

Next, we need to express the free-volume term 0, as a
functional of [pt, ctj. The formal definition Q/Z is not
useful for that, and we have adopted the following pro-
cedure. We start by assuming a local dependence, i.e.,
v)=v (pt, ct), which we further take to be the same
function v (p, c) which applies for a bulk with homo-

geneous p =pl and c =ci. Calculating the free volume v,
of an atom in the crystal (c = 1) we approximate

v, = exp —Ppv o g„[U(r,R„)—U„] d r6 t'0

(here n spans only the occupied sublattice). Near TM, vf
might be called the "Lindemann volume. " For c =0
(gas and liquid), we can expect vf to be given roughly by
vo(1 —pv„„,), where v„„(T,p) is the effective hard-

core atomic volume. ' For intermediate c, we evaluate
v (p, c) by calculating the free-energy difl'erence due to a

single-shell crystalline order parameter by the method of
Ramakrishnan and YussoufI. ' The final result is rather
cumbersome, but we find it to be extremely well approxi-
mated by a simple Gaussian, whose width is

[z (1)—1]pvo vopD =8C(1 —C) —1++ — g ( —1) z (k)Ut,
1 pUQ kgT k

where C (a function of p and T) ' is the Fourier trans-
form of the direct correlation function of the liquid at
2tr J3/a, and a is the lattice constant. The Gaussian falls
off' for increasing c, and crosses v, at some cQ ( 1, at
which point we believe vf to be more accurate. In con-
clusion we have

v =max[vo(l —pv„«)exp( —c /2D ),v, ].

Our final free-energy expression is

G = kaT Novogt ptln(vi/vo)+lnZ

Minimization with respect to ci,pl yields 2M equations
for M layers, to be solved self-consistently.

We have applied this scheme to a LJ crystal. Lattice
sums are extended to infinity, first as true sums, and then
as integrals, to allow for the eAect of the tail of the van
der Waals potential. First, we study the bulk phase dia-
gram and find a triple point at TM =1.0662'/ka, and
critical point at T, =1.229@/kB. (The LJ potential has a
depth e and core radius a. ) With consideration of the
crudeness of the lattice model assumed, the agreement

! with the true values T~ =0.7e/kB, and T, =1.26m/kB is

quite acceptable.
When applying this model to surface melting, we note

that the neglect of fluctuations makes it inapplicable to
high-index surfaces, where step fluctuations should be
important. Then we consider the three low-index crystal
surfaces. Of these, the (111) surface is discarded, be-
cause within our two-sublattice model a (111) layer is ei-
ther totally filled or totally empty, and this does not al-
low for intralayer communal entropy to develop. We are
left with the (100) and (110) surfaces and both of them
have been studied. For a typical number of layers M of
order 400, we have solved the 2M minima equations for
[pt, ctj, when (p, T) lie on the coexistence line. The
boundary conditions were solid on one side of the slab,
gas on the other side. An initial guess for [pt, ctj was
taken, and brought to self-consistency by successive
iterations. For T well below TM, convergence was fast
(=100 iterations). On approach to T~, convergence be-
came progressively poorer; for example, for t =1 —T/
TM =10,about 10 iterations were needed.
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FIG. 2. Calculated LJ surface free energies y (units of
E/o2) and (110) surface specific heat C, = —T(8 y/8T )
(thicker solid line, units of ka/cr ). Note singularities due to
surface melting at TM =1.0662m/ka.
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FIG. 1. Density (units of o ', vertical lines) and
crystalline-order (dots) profiles of the LJ (110): (a), (b), (c)
solid-gas and (d) liquid-gas interfaces at coexistence.

Our main result is displayed in Fig. 1, for the (110)
surface [the (100) results diA'er only numerically]. Sur-
face melting is clearly taking place, with a quasiliquid
layer growing critically near TM. There appears to be no
singularities below TM. The surface free energy, ex-
pressed as y=(PV+G)/area, is directly calculable (P is
the pressure at coexistence), and, as Fig. 2 shows, it is
continuous. This does not at all rule out the possibility
that in reality a first-layer melting transition, ' and/or a
roughening transition, might occur below TM. Simply,
the associated fluctuations are not permitted in our treat-
ment. In spite of this, we believe that no previous theory
of comparable quality exists, particularly very near TM.
Before leaving surface free energies, we note the strong
tendency of (110) and (100) results to merge already for
t as large as 10%. This thermal decrease of surface an-
isotropy has been well-known experimentally, ' and was
also found by computer simulations, " but not described
theoretically before.

According to phenomenological theories, the quasi-
liquid layer grows critically as TM is approached. While
growth like

l
lnt

l
is expected for short-range forces, 6 s a

power-law growth t ' is predicted ' for r van der
Waals forces. Both types of behavior have been reported
in recent experiments. We can extract from our cal-
culation the thickness of the liquid layer (arbitrarily
defined as the numbers of layers between cI =

2 and

pt =90% of the bulk liquid density). The growth behav-

ior seems indeed to tend asymptotically to t ', al-
though with strong deviations for large t. The calculated
behavior of Fig. 3 parallels remarkably the experimental
points for Ar on graphite, although the numerical
agreement is merely a coincidence, since the experimen-
tal surface was very likely not (110). We have further
tried cutting oA' the long-range attractive tail (at
r=3.2cr), and also reversing its sign into a weak repul-
sive tail, to see whether the quasiliquid film growth was
altered, as expected. The result of Fig. 3 provides a re-
markable confirmation. In the short-range case the
growth is indeed logarithmic, similar to the reported be-
havior for Pb(110) and oxygen. In the repulsive case
the film thickness does not diverge any more, but rather
levels oA' at some finite value. This "blocked" surface
melting agrees well with a prediction of Levi and Tosat-
ti. It may be related to the behavior found in the com-
puter simulations of Au(111) and also to that seen ex-
perimentally on Ge(111). ' Lastly, we have calculated
the value of crystallinity at the gas-quasiliquid-layer in-
terface c(0), and find c(0)—exp( At ), with A =—0.9
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FIG. 3. Dependence of the quasiliquid layer thickness upon
the reduced temperature. Note the change of behavior from
long-range attraction (LJ) to short-range (SR) to long-range
repulsion (REP). Experimental points from Ref. 4.
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and 8= —,
'

in the long-range case, but c(0)—t ' in the
short-range case. This quantity is in principle measur-
able by surface diAraction.

In summary, we have developed a lattice theory which
describes surface melting. It contains approximations,
but it is basically "ab initio, " and has no adjustable pa-
rameters. The growth of a quasiliquid layer at a warm
low-index LJ crystal surface is demonstrated and paral-
lels closely that found in very recent experiments.
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