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Commensurability Effects and Modulated Structure in Polyanilines
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We study a model for the protonated polyanilines in which the polarizability of the extended z elec-
trons on the polymer promotes the ordering of the protonated sites in a series of commensurate composi-
tion waves on the polymer. The model predicts a succession of first-order transitions between locked
commensurate structures for the protonated system, with the period of the structure determined by the
electronic band filling. Several implications for the physical properties of the protonated polyanilines are
suggested.

PACS numbers: 61.41.+e

A number of the ground-state and excited-state prop-
erties of conjugated polymers can be understood within a
continuum theory for the coupled electron-phonon sys-
tem in the polymer. In most of the systems studied to
date the underlying electronic bandwidth is relatively
large which leads to a large coherence length for density
fluctuations in the valence electron sea. As a conse-
quence, fields describing the propagating electrons and
the associated lattice polarization are well described as
slowly varying functions of position on the polymer;
theories based on this physical observation have been
developed to describe broken-symmetry ground states,
and various localized charged and neutra1 structural ex-
citations exhibited in a broad class of conjugated sys-
tems. '

The physical properties of a new class of conjugated
polymers, the polyanilines, are beginning to be explored
experimentally. Typical structures for the polymer are
sketched in Fig. 1. The polymer consists of a series of
C6H4 rings which are interconnected by nitrogen (N)
sites. The electronic structure of the polymer can be
modified by the adsorption of protons at the N sites, in-
teracting with the N lone-pair orbitals. We note that the
modification of the electronic properties of the polyani-
lines by this procedure difIers in an important way from
the more familiar charge-transfer doping of the more
conventional conjugated polymers, and consequently, the
physics of the doped polyanilines is likely to be more in-

teresting. The properties of the "doped" polyanilines de-
pend on two independent parameters, namely the elec-
tronic band filling (f, ) and the fraction of the available
sites which are protonated (fz). We define f, =n,
—6nN and fz =n, /ntv, where n„n~, and nN are the
numbers of electrons, protons, and nitrogens, respective-
ly, so that f, =(f~ —1)/2 denotes a compensated struc-
ture. The variation of the proton content introduces
qualitatively new physics. The adsorbed protons may oc-
cupy only discrete N sites on the polymer, so that only
periodic configurations with period equal to a multiple of
inter-N spacing are possible. Commensurability eA'ects

between the resulting composition wave on the discrete
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FIG. 1. Three reference structures for polyaniline: (a) the
completely oxidized polyaniline base, (b) the partially reduced
emeraldine base, (c) a model for the high-density protonated
structure.

N lattice and the Fermi wave vector of the z-electron sea
dominate the physics of this system. The polymer can
exhibit an array of periodic ground-state structures, as a
function of f, and f~, as the system evolves through a
series of locked "commensurate" structures. Similar
phenomena have been encountered in the study of com-
peting interactions in other contexts in condensed-rnatter
physics; in this Letter we will construct a simple model
to describe these phenomena in the polyanilines, and ex-
tract some of the important structural implications.

A typical starting material used in the doping studies,
emeraldine base (EB), is shown schematically in Fig.
1(b). In EB, half the available N sites are hydrogenat-
ed, so that the excess electron concentration is compen-
sated by the excess protons on the structure. In this
structure the hydrogenated sites order in a partially
segregated structure with two adjacent occupied sites fol-
1owed by two empty ones. The conductivity of the poly-
mer is varied by treatment of EB with an acidic solution
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in which a fraction of the N sites are protonated, and a
proposed "polaron" lattice for the highly doped state is
represented in Fig. 1(c). To date, analyses of the doped
polymers have focused on the response of the bond-
alternation pattern on the backbone to the modulated po-
tential provided by the proton-adsorption pattern. We
focus instead on the patterns in which the protonated
sites order on the backbone.

The low-temperature equilibrium "proton" adsorption
pattern is determined by the electronic band filling. Ad-
sorption of a proton on an N site produces a shift of the
"on-site" energy for n electrons propagating across the
N site, and the energy of the system is optimized when
the proton sites order so that the resulting modulated
site-diagonal potential (5) produces a (low-order) gap at
the Fermi energy in the z-electron spectrum. The argu-
ment is complicated slightly by the presence of bond re-
laxation on the polymer, which modulates the nearest-
neighbor oA'-diagonal terms in the electronic Hamiltoni-
an, and can also contribute to the gap at the Fermi ener-

gy. Therefore, there are two factors which contribute to
open a gap at the Fermi energy. For the parameter
values which are appropriate for polyanilines, the site-
diagonal potential dominates the bond-relaxation term.
But for different parameter values (small 5 and large
electron-phonon coupling), it is possible that bond relax-
ation dominates the 5 term.

This simple model allows us to interpret the interac-
tions leading to the partially segregated EB structure.
Consider a reduced electronic Hamiltonian in which the
C6 rings mediate a hopping amplitude between nearest-
neighbor N sites. For the neutral EB structure, the
effective n. band is —,

' full, i.e. , f, = —,', and consequently
the system is especially stable for ordered protonated
configurations with period 4. If we denote an occupied
(empty) site by a spin up (down), these configurations
correspond to the period-4 structures t i i j, t t i i, and

t t t J, i.e., the f~ = —,
' system seeks the partially segre-

gated t t J j structure. More generally, if we monitor the
total energy as a function of f~ for fixed f„we can ex-
pect a discontinuity in slope at the points at which f~ be-
comes commensurate with f, Apartial map. of stable
phases with f, )0.5 is given in Fig. 2. Among these, the
phases found in the dense region which represent the
long-period structure would be particularly difficult to
synthesize in a strictly periodic form. The stable
period-4 phases listed above occur along the ordinate
f, =0.75; the terminal phases fz =0 and f~ =1 corre-
spond to the empty and saturated N lattices, respective-
ly.

We wish to transform the data presented in Fig. 2 into
a low-temperature phase diagram for the system as a
function of the experimentally controllable chemical po-
tentials for electrons, p„and protons, p~. To describe
the energetics of this system, we construct a Su-Schrief-
fer-Heeger-type Hamiltonian for the coupled electron-
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F1G. 2. Stable phases in f, f~ plane. Do-ts correspond to the
pure phases of finite period. (a)-(c) refer to the structures
(a)- (c) in Fig. l, respectively.

where t„=tp —a(U„—U„+i) is the nearest-neighbor
hopping amplitude (between C-C, or C-N), C„(C„)is
the creation (annihilation) operator of electrons at the
nth site; S„can take the value either 1 or 0, where S„=1
means the occupied site and S„=O the unoccupied site.
d, represents the shift of the diagonal self-energy of an
occupied site due to the proton adsorption. These pa-
rameters were adjusted by fits to the quantum chemical
calculations. We take t p =3.5 eV, a =6.5 eV/A. , K =45
eV/A, and 6 =1.0 eV. We integrate out the electron
propagation through the ring structure and find that the
eA'ective hopping amplitude between nearest N sites is
t,tt=tp/2. The diagonal self-energy 6 is not changed
by the elimination of the ring structure and neither is the
spring constant E in the lowest-order approximation. a,~
is chosen to produce the same gap size at the Fermi ener-
gy and is taken as a,&= a. By diagonalizing the elec-
tronic part of the Hamiltonian for various f, and f~, we
seek the structural configurations satisfying the following
self-consistency relation:

y„= ——g [Zk (n ) Zt, (n + 1 ) +Xk (n + 1 ) teak (n )],

phonon system:

H = —g„t„(C„tC„+1+C,t+|C„)

wg„c„'c„s—„+(rc/2) g„(U„—U„+,) ',
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where Xk (n) is the eigenfunction of the electronic part of
the Hamiltonian and the prime on the sum means that it
runs up to the Fermi level. The total energy is given by

E„,(f„fp) =2+kEk+ (K/2)g„y„2,

/2L 0
+

f1

where y„=U„—U„+~, the factor of 2 comes from the
electron-spin degeneracy. From these calculations we
extract an energy "surface" as a function of the f, and

fz at the points plotted in Fig. 2. For selected structures,
we solved the full Hamiltonian including the ring struc-
ture and obtained very similar results.

We make the following general observations about this
energy surface. At fixed f~, the energy is a convex func-
tion of f, . This implies that for fixed f~ the electronic
chemical potential produces a single unique phase, al-
though for low-order commensurate band fillings, a
phase can be stable over a finite range of electronic po-
tential. This is quite similar to the familiar situation for
charge-transfer doping of simple conjugated polymers
like polyacetylene, where the range of stability corre-
sponds to the critical energy for the creation of a discom-
mensuration of a low-order periodic configuration. How-
ever, at fixed f, we find that the energy of the phases of
finite period is a nonconvex function of f~. This implies
first-order phase boundaries separating neighboring
stable phases, and phase coexistence between adjacent
phases. This behavior is particularly striking across the
open regions of the phase map in Fig. 2 which corre-
spond to low-order commensurate electronic densities.
We make these arguments more quantitative by applying
a Maxwell construction to the calculated energy surface,
and extracting critical values of p, and p~ which isolate
various ordered configurations of the polymer; the results
are presented in Fig. 3. For comparison, two trivial lim-
its of the model are presented in the insets. In the upper
right-hand panel we consider the situation where h, =0;
this leads to a critical potential for proton insertion

(p~ =0) which is independent of the electronic chemical
potential. For the case where t =0, the structural modu-
lation is also trivial in the sense that the empty and sat-
urated phases fill up the phase diagram with all other
phases degenerate along the transition line. When t and
h. are comparable, the degeneracy between the modulat-
ed structures is lifted, leading to a rich array of possible
stable structures. For our system, with 6/to= l/3. 5, we
obtain the more intricate phase diagram presented in the
central panel. The shaded regions contain higher-order
periodic structures which we have not included. The
upper half of this diagram is relevant to the experimental
work on polyaniline. The dashed curve which winds
through the upper region denotes the configurations
which are exactly compensated, i.e., the number of ex-
cess electrons equals the number of adsorbed protons.
Deviations from the dashed line then denote charged
(doped) configurations. First-order phase boundaries
separate adjacent stable phases.
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FIG. 3. Phase diagram in p, -p~ plane. Vertical lines be-
tween adjacent stable phases denote the first-order phase
boundaries. Pure phases up to period 5 are shown and the
shaded region corresponds to longer-period phases. Similar
plots for two limit cases are drawn for comparison.

It is useful to note that the interactions which stabilize
the intermediate modulated structures inevitably produce
insulating materials with a gap separating the occupied
and unoccupied electronic states. However, the limiting
empty and saturated lattices J J f J. . . and t t f t. . . have
a uniform site-diagonal potential on the N sites. A small

gap is produced by the residual bond relaxation; howev-
er, this is a very small gap (about 0.05 eV) which is un-
likely to survive three-dimensional interactions neglected
in our model Hamiltonian. Thus, for all practical pur-
poses, we should regard the terminal states as degenerate
quasi one-dimensional metals.

EB is found as the tf j) period-4 structure in the
upper half of the phase diagram. We believe that the
doping procedure most commonly employed, in which
the EB structure is equilibrated in an acidic solution, can
best be modeled by a trajectory in this diagram which
holds f, fixed, and varies pz. This directs the system
through the intermediate t t t J phase' before a final
first-order transition to the saturated f t t t emeraldine
salt structure. The most obvious experimental implica-
tion of this doping mechanism is the phase coexistence of
normal and metallic regions, leading to a Pauli suscepti-
bility which scales linearly with proton concentration
above a critical proton potential. This is in qualitative
agreement with the reported onset of Pauli susceptibility
in the doped materials, although the experiments also re-
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veal a nonmonotonic evolution of Curie spins at lower
dopant densities (with the maximum signal around

f~ =0.8. "' Although a plausible explanation would be

unpaired spins at interfaces between coexisting t t J J and

structures, we have been unable to identify a

center which should be associated with a localized spin

at such an interface. More suggestive are recent mea-

surements which have begun the doping procedure from

a starting state which is hydrogen rich relative to the EB
configuration (f, = —', and f~ = —,

' ). ' Protonation from

this state produces a new high-spin state as the proton
content is increased. %'e suspect that the variation in

this doping schedule is forcing the system through one of
the "dense" regions of Fig. 2, containing many neighbor-

ing competing phases. The formation of defects contain-

ing isolated spins is likely in these congested regions of
the phase diagram. It has been suggested that the physi-

cal properties of the protonated polyanilines must be un-

derstood in terms of the degree of oxidation and the de-

gree of proton ation; the phase diagrams presented

above should be useful for systematizing these data.
More detailed consideration of the electronic structure

in the doped states of this system may well point to
characteristic features in the optical and infrared spectra
which will allow their identification. Also important is

the extension of this theory to finite temperature. As the

temperature increases, the stability region of each phase

shrinks down and the higher-order modulated phases be-

come unfavorable against the disordered state. In this

case it might be possible that the t t J J phase goes

directly to the t t t t phase without passing through the

intermediate t t t J phase as f~ is increased. '

In summary, it appears that a number of the physical

properties of the doped polyanilines may be interpreted

in terms of a theoretical model in which lattice commen-

surability eA'ects are playing a fundamental role. %'e

provide a simple theory which predicts a series of
structural modulations due to the commensurability
eA'ects. It will be very interesting to further explore the

extent to which this sort of model can be applied to study

other physical properties of the polyanilines.
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