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Finite-Density Onsager-Type Theory for the Isotropic-Nematic Transition of Hard Ellipsoids
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We propose a simple density-functional theory for the isotropic-nematic transition of a system of hard
ellipsoids which yields results in fair agreement with the computer simulation studies and which reduces
exactly to Onsager's theory in the limit of infinitely dilute systems of infinitely long ellipsoids. When the
free energy is expanded with respect to the Maier-Saupe quadrupole order parameter an explicit Landau
theory is produced which yields good results for small nonsphericities. The theory also predicts a Lin-
demann rule for orientational freezing.

PACS numbers: 64.70.Md, 05.70.Fh, 64. 10.+h

A system of nonspherical molecules can exhibit a large
variety of liquid-crystal phases or mesophases with a
symmetry in between that of the liquid and that of the
crystal. ' The simplest possible theoretical model for a
nonspherical molecule is certainly a hard ellipsoid of re-
volution. A system of hard ellipsoids (HE) can therefore
be expected to be as good a reference system for the
theoretical study of the liquid-crystal phases as the sys-
tem of hard spheres (HS) is for the study of the con-
densed phases of spherical molecules. Recent computer
simulations have shown, moreover, that the phase dia-
grarn of HE already has a very rich structure, not unlike
that of the real molecular systems. While previous
theoretical investigations ' have indicated how the clas-
sic liquid-crystal theories of Maier and Saupe and of
McMillan can be incorporated into the general den-
sity-functional theory of phase coexistence, relatively
less attention has been paid to the relation between the

latter theory and Onsager's theory of the isotropic-
nematic transition of infinitely dilute systems of infinitely
long rods. It is the purpose of the present investigation
to present a fairly simple extension of Onsager's theory
to systems of HE of finite elongation and finite density.
Only the isotropic-nematic transition of the HE system
will be considered here, while the results will be com-
pared to the most recent theoretical' '' and computer
simulation studies.

The form of the density-functional theory which will
be used here is a straightforward extension to the HE
systems of the theory used previously for the study of
phase equilibria in HS systems. ' Our starting point is
the following exact expression ' for the (Helmholtz)
free energy of the ordered (nematic) phase, F[p], viewed
as a functional of its local number density p(x), in terms
of the corresponding free energy of the disordered (iso-
tropic) phase, F[po], of uniform and isotropic density po.

k) c2(x,x'; [p,] )ap(x) Wp(x'),

with a plane of symmetry perpendicular to n. In this
case f(u) depends only on the angle O between u and n,
viz. , f(u) =f(m):f( —m) with —u n=cosO=m. The
simplest one-order-parameter possibility is to use the
Maier and Saupe form, '

f(m) =exp(ym ) ~ dm exp(ym )
0

(2)

so that for ——,
' z( O( —,

' z, f(cosO) is singly peaked
around 0 =0 with an inverse width determined by y and
y&0 corresponding to an anisotropic phase. Equation (2)
is physically acceptable and mathematically more con-
venient than the Onsager trial function. More general
distributions can be considered but are found to give only
little improvement.

Before the free energy of (1) can be minimized with
respect to y of (2) we also need an explicit expression for
the direct correlation function of the difierent phases of
the HE system. Since the theoretical information on the

PF[p] =PF[po]+q d x p(x)ln[p(x)/po] — d x„r d3x'„dk(1—
where we have neglected the contribution from external
fields and introduced the two-body direct correlation
function, c2(x,x';[pz]), of a system of density pz(x)
=po+kAp(x) with bp(x) =p(x) —po. The constant in-
verse temperature is P =1/kBT, while x = jr, u] with r lo-

cating the center of the HE and u its orientation, viz. , u
is a unit vector along the axes of revolution of the HE.
The X integral in (1) results from a functional integra-
tion in density space' between the disordered (X=0)
and the ordered 4, =1) phase at constant average densi-

ty, viz. , p=p0. The average density p is defined here as
the spatial average of p(x)—:p(r, u) over the volume with
respect to r and over a unit sphere with respect to u.

In order to locate the possible ordered phases we mini-
mize the free energy (1) with respect to a suitably
parametrized local density p(x) which in the case of a
nematic phase can be written, p(x) =pf(u), with f(u)
the normalized angular distribution of the HE. In the
following we will restrict ourselves to nematics with a
uniaxial cylindrical symmetry around a director n and
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direct correlation function of nonspherical convex bodies
is very scarce' we will assume a simple factorization of
the translational (r) and the orientational (u) direct
correlations:

c2(r, u;r', u';[p]) =Z(U'U )cpv ', 77(g), (3)/r —r'i
Gp

CpY —1,g —cpY
Op

(5)

where op is the average contact distance of the HE in the
isotropic phase (so that the HE can be replaced by HS of
diameter oo), whereas cro times x (&1) is the average
contact distance of the HE in the nematic phase. Since
k is the natural length scale of the problem we put x =k
when k & 1 and x =1/k when k ) 1, or in terms of Z,
x(z) =(1 —

ized )' /(1+ ized ) ' . It is clear that the
difference between tT and tl as obtained from (5), or the
expansion of j(q) around tl in (3), can represent only a

where the translational correlations of the HE system
have been further approximated by those of HS of the
same volume (or packing fraction rt =

6 troop with
G'p =0 ii |T~ for ellipsoids of revolution with diameter o.

ii

along the axis of revolution and o.& perpendicular to this
axis) described here within the Percus-Yevick (PY) ap-
proximation. The angular direct correlations are taken
care of by (3) through the factor Z(u u') which de-
scribes the volume excluded to two HE of respective
orientations u and u' when averaged over the center to
center orientations and divided by the molecular volume
v,]= —,

' zaire. ~. Approximating the distance of closest
approach of two HE by the Gaussian overlap model pro-
posed by Berne and Pechukas, ' one finds

Z, (u. u') = [1 —Z'(u u') '] 'i'(1 —Z')

with Z=(k —1)/(k +1) and k =a~i/ct~ the aspect ra-
tio, viz. , 0 & k & 1 for oblate and 1 & k & ~ for prolate
HE. Notice that approximation (3) is akin to a pertur-
bational treatment of the HE system around a HS refer-
ence system. For the isotropic phase of the HE system,
the reference HS system is taken at the same density (rt)
as the original HE system (g), viz. , tl =tI in (3), whereas
for the nematic phase the effective density, g, of the
reference HS system has to be taken smaller (tl & g)
than the average density of the nematic (q) so as to take
into account the reduction of the interactions in the or-
dered phase as compared to the disordered isotropic
phase used as reference for the nematic. The explicit re-
lation between j and tl, tT=tl(tl), to be used in (3) will
be determined from a structural scaling condition be-
tween the HE and the reference HS which takes into ac-
count the geometric constraints of the nematic phase.
We will assume therefore that, at contact, the direct
correlation functions of the HS system evaluated at the
real and at the efIective density are related by

rough estimate of the influence of the higher-order terms
of (1) if the latter were to be expanded further with
respect to hp(x). From the study of the liquid-solid
transition' it is known, however, that these higher-order
terms cannot be completely neglected because of the
poor convergence properties of the Ap(x) expansion. It
is hoped therefore that (5) takes into account the essen-
tial physics of this effect in the same way as the structur-
al scaling condition used elsewhere' did for the liquid-
solid transition. Two important aspects of the above ap-
proximation scheme are that (1) it admits an exact sym-
metry between oblate and prolate HE of the same molec-
ular volume, i.e. , a Z —Z invariance, and (2) it reduces
exactly to the theory proposed by Onsager ' for the
nematic phase of a dilute system of long rods. The ex-
istence of an almost perfect oblate-prolate symmetry is
indeed one of the major findings of the recent computer
simulations, while Onsager's theory is an exact result
in the limit as k ~, g 0 with kg=c constant.

For the isotropic phase we find from (3) that the ex-
cess thermodynamic properties of the HE are given by
those of the HS of the same molecular volume, times the
angular-averaged excluded volume (4), viz. , for the
compressibility equation of state,

g HS

=~(Z)(4tl —2q +art )/(1 —q), (6)

with
r~

~(Z) =„d'uJt d'u'ZBp(u u')

1
& + arcsinX

z(1 —z')'" '

where a=1 when the PY approximation is used to de-
scribe the HS [as implied by (3)] and a =0 when the
more accurate Carnahan-Starling equation of state is
used. In Fig. 1 we compare the results of (6) with the
computer simulations and with some of the alternative
theories" leading to explicit expressions [notice that (6)
can also be obtained from the Pynn model' used by
Singh and Singh "]. It is seen there that within the PY
theory of HS the pressure of the HE is slightly overes-
timated by (6) but that with the Carnahan-Starling HS
expression the agreement is very good. This, in view of
the simplicity of (6), surprising result certainly points to
the soundness of our basic approximation (3). For the
nematic phase we find that the free energy has a second
minimum (besides the one at y=O corresponding to the
isotropic phase) only above a threshold density, qo(k).
Whereas qo(k) is a rapidly decreasing function of k (be-
cause of the oblate-prolate symmetry we only consider
prolate HE, viz. , k ) 1), the order parameter at thresh-
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I IG. 1. Reduced pressure of the isotropic phase,
p* =Ppv, ~, for k =2 and 3 as given by Eq. (6) (solid line) and

by scaled particle theory (dashed line) as extended to convex
bodies by Gibbons and Boublik [see Eqs. (4.96) and (4.105) of
Ref. 131. In each case the upper curve corresponds to the ver-
sion of the theory which in the limit of hard spheres (k =1)
reduces to the Percus-Yevick compressibility result while the
lower curve corresponds to the version which reduces to the
Carnahan-Starling result for k =1. The dots correspond to the
computer-simulation results of Frenkel and Mulder (Ref. 3)
(k =3 is the largest nonsphericity considered by the simula-
tions).

old, yp
= y(r)p(k ),k ), remains practically constant

(yp=3) pointing to the existence of a Lindemann rule
for orientational freezing. The nematic phase then stabi-
lizes very quickly, first at constant density and then at
constant pressure, while for still higher densities the
free-energy extremum corresponding to the isotropic
phase disappears as a minimum so that only the nematic
phase survives. All these characteristics are very close to
one another and decrease with k somewhat slower than
assumed in the Onsager theory, viz. , kr)(k) is a slightly
increasing function of k for k & 1. The constant-
pressure isotropic-nematic transitions have been located
here by Maxwell's double-tangent construction which is
much simpler but, because of the inherent thermo-
dynamic inconsistency, not identical to the solution of
the two-phase coexistence conditions used previously. '

As seen from Fig. 2 the coexisting densities are slightly
underestimated by the theory but smoothly join the
simulation results (k =3) to the Onsager limit (k =~).

FIG. 2. Coexisting densities (g) of the isotropic (lower
curve) and nematic (upper curve) phases as a function of the
aspect ratio k as obtained from various sources. We have from
top to bottom (1) the computer simulations (Ref. 3) (dots),
where the only available results correspond to k =2.75 and 3,
(2) the present theory (solid line), (3) the theory of Mulder
and Frenkel (Ref. 10) (dot-dashed line), and (4) the theory of
Singh and Singh (Ref. 11) (dashed line). When k decreases
the coexisting densities increase and width of the transition de-
creases very rapidly. In the high-density region (k & 2.5) the
isotropic-nematic transition will be preempted by a liquid-solid
transition (Ref. 3). In the opposite low-density-large-k region
we show in the inset how the present results (solid line) go
slowly over into the Onsager limiting result q =c/k (dashed
line).

The theoretical and computer simulated phase diagrams
are compared in Fig. 3.

Finally, we have also investigated the status of
Landau's theory of weakly first-order transitions' by ex-
panding the free energy in terms of the Maier-Saupe
quadrupole order parameter, q = fp dm ( —', m —

—,
' )

xf(m ), which is a bounded order parameter (0 & q & I )
whereas y is not, viz. , PF=+„a„q", with truncation of
this expansion after the q term. We have compared the
density-functional theory and its Landau approximation
and found that for k ~ 3 the Landau theory performs
surprisingly well, whereas for k & 3 it still predicts a
transition at about the correct density but which is much
too weak and narrow (as k tends to infinity q and At)/t)~
tend, respectively, to 0.386 and 0.043 for the Landau
theory, and 0.799 and 0.276 for the density-functional
theory, whereas the exact' results are 0.792 and 0.274).
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FIG. 3. Theoretical (solid line) and computer-simulation
(Ref. 3) phase diagram in the pressure(p*)-density(t)) plane
for k =3. The tie line between the isotropic (dots) and nemat-
ic (triangles) branches of the simulations is indicated by a solid
line segment. For k =3 the coexisting densities are gl =0.507,
t) jv =0.517 for the simulation results (Ref. 3), r)t =0.472,
g =0.484 for the present theory, g& =0.419, g&

—0.437 for
the theory of Mulder and Frenkel (Ref. 10) and t)t =0.309,
t)~ =0.330 for the theory of Singh and Singh (Ref. 11).
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