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Nonlinear Nonreciprocity and Directional Bistability in a Ring Resonator with
a Quadratic Nonlinear Medium
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The mutual interaction of counterpropagating waves in a ring resonator containing a medium with
second-order dispersive nonlinearity is studied. The theoretical treatment of nonreciprocal propagation
is based upon the novel coupling of counterpropagating and mode-locked first- and second-harmonic
waves. The experimentally observed transfer characteristics of a high-frequency model system reveal a
directionally asymmetric bistability. This nonreciprocity can also be attributed in the time domain to
the occurrence of dissipative structures, i.e. , to solitons traveling within the resonator.

PACS numbers: 42.65.—k, 03.40.Kf, 42.80.—f

The intense study of optical bistability in nonlinear op-
tics has off'ered new facilities for all-optical signal pro-
cessing devices. The so-called nonlinear nonreciproci-
ty which has recently been investigated seems to be
especially relevant for novel unidirectional devices. Up
to now, it is known that in case of a saturable or Kerr-
type nonlinear medium a cross interaction of counter-
propagating waves occurs and, in consequence, the prop-
agation constants for forward- and backward-traveling
waves of different amplitudes are not equal. In connec-
tion with a passive ring resonator filled with such a non-
linear material, this nonlinear nonreciprocity may lead to
directionally asymmetric bistability.

Recently, we have shown that via second-harmonic
generation a quadratic nonlinear medium can behave
similar to a material with a Z nonlinearity which, for
example, yields an amplitude-dependent index of refrac-
tion. ' By use of a high-frequency transmission line as
the experimental model system, " it has been demon-

strated that this process also results in dispersive bista-
bility in case of Fabry-Perot and ring resonators. ' The
purpose of this Letter is to study nonlinear nonreciproci-
ty and directional bistability in materials with a X sus-
ceptibility, which provide one of the fastest electronic
nonlinearities which are available. We present a novel
and general theory, based on interacting harmonics,
study for the first time the inffuence of the relative
phases of forward and backward waves, and consider
spatially limited systems. Experimentally, we report on
the first observation of directionally asymmetric bistabil-
ity. The presented system allows further new views into
the phenomena of nonreciprocity because a key position
is here taken by the propagation of solitons. The
significance of the results to other fields is finally dis-
cussed.

The theory is based upon the following Boussinesq
equation for the electric field E in the (x, t) laboratory
system ":

E „—(I/ut) )E„=—(E/2uo)(E )„—trE„„+aE,—bE„„,

Here the subscripts denote partial derivatives; uo is the small-signal phase velocity at low frequencies; X, x, a, and b
denote the parameters of nonlinearity, dispersion, and frequency-independent and frequency-dependent losses. We now
examine the case of counterpropagating waves and intend to derive a nonlinear dispersion relation, i.e., a relation
among phase constant, frequency, and field amplitude of forward- and backward-traveling waves. For that purpose and
on the supposition of lossless second-harmonic generation (a =b =0) the usual Ansatz of interacting first and second
harmonics ' ' is extended to the case of standing waves yielding

2

E(x, t) =Re g A„„(x)exp[i[( —1)" 'k„x+p„,(x)+ v62„ttto —vtat]]
,p, v=1

k(ta) =ra/[u02(1 —kca')]". (3)

where i = —1, Bq„ is the Kronecker symbol, the sub-
scripts p =1,2 denote forward and backward waves, re-
spectively, and v=1, 2 designate first and second har-
monics, with complex envelope functions A„,(x)
x exp[i&„„(x)]. ta is the fundamental angular frequency;
k, =k (vs) are the phase constants of the first and
second (v=2) harmonics, where the small-signal disper-
sion law is given by

Moreover, po is the initial phase diA'erence between for-
ward and backward fields. In the following it is assumed
that the variation of the amplitudes along distances
of the order of a wavelength is small, for example

~ A„„„~((k,
~ A„„~,and that for each direction the first

and second harmonics form a mode-locked stationary
wave. As a result of the latter assumption, the phase ve-

locities of these harmonics are equal ' and thus there is
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no change in their relative phase difference yielding

2[k(+( —1)" 'y„(„l =k2+( —1)" (4)
On insertion of Eq. (2) into Eq. (1) and with the help of Eqs. (3) and (4) and an analogous procedure as described by
Marburger and Felber, ' the following coupled mode equations for counterpropagating harmonic waves can be de-
duced:

Jh

2„),= 4 Xk([ —A„)A(3 —p)psin20+A(3 —p))(Ap2 r4(3 —p)p) sin0],

I
A A

A„q„= —
—, Zk2(A 3 „))sin20+22)(A2(sin0),

p„(, = —,
' ( —1)"Xk( [A„2+2 (3 —»2cos20+A(3 —p)(/Ap) (A (p+c422)cos01,

Ap2x 8 ( I ) +k 2(1/+p2) (+g 1 +2 (3 —~) ) cos20+ 2A ( (A 2) cos0),
with

(sa)

(sb)

(5c)

(Sd)

0(x) =2k)x+(((((x) —((p((x) —(to. (6)
First, from Eqs. (5) it can easily be seen that an averag-
ing over a few spatial periods according to Ref. 14 would
lead to a decoupling of forward and backward waves.
The system of coupled equations (5) then collapses to
two identical and independent systems as usually dis-
cussed; cf. Ref. 13, In that case, a nonlinear dispersion
relation can be derived; and on the assumption of a
small nonlinear index ZA„)/xylo, the nonlinear contribu-
tion (I)„), of the phase constant of the first harmonic is

proportional to A„~, a result which is identical to the case
of cubic nonlinear media. That means that via the
second-harmonic interaction, quadratic nonlinear media
cause a self-interaction similar to cubic nonlinear materi-
als.

However, if in an experimental system the length of
the nonlinear section is limited —for example, on the or-
der of the wavelength —the above approximation is
not valid. Then without averaging a net contribu-
tion remains and a cross eAect between forward- and
backward-traveling waves takes place. From our numer-
ical calculations it is concluded that Eqs. (5) predict a
pronounced oscillatory behavior of (I)((„and (I)2(„with a
period of one-half of the wavelength of the fundamental
frequency which is expected from the standing wave.
Thus the cross interaction is based on the formation of a
nonlinear index grating. As a further result, the interac-
tion results in a clear difference of the phase velocities
for two directions provided that the magnitudes of the
amplitudes of the counterpropagating waves are diAer-
ent. On the other hand, this behavior can also be judged
directly from Eq. (5c) by use of 0(x) =2k)x. It should,
however, be noted that the wavelength is slightly en-
larged by nonlinear interaction. ' The numerical cal-
culations also show that another interesting case arises if
(j)0&0; then the position of the standing wave is shifted
with respect to the nonlinear medium of finite length.
Consequently, the average nonlinear phase shift is also
altered by the phase oA'set (I)o. In conclusion of the
theory, in case of a short medium, a second-order non-
linearity can also lead to a nonreciprocal propagation as
has been discussed in the very beginning. Similar to the
mechanism described by Kaplan, it may then be possi-
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FIG. 1. Nonlinear bidirectional ring resonator where

F„(x,t), p =1,2, denote the forward and backward waves, re-
spectively (see also text).

ble that as a result of a kind of instability the amplitudes
of the counterpropagating waves within a resonator be-
come diA'erent even if the system is pumped by signals of
equal amplitude. In the following these ideas are com-
pared with first results from measurements with a high-
frequency model system.

As represented in Fig. 1, we consider a bidirectional
ring resonator partly containing the nonlinear medium.
The incident beams of opposite directions are of equal
amplitude A;„. A„,„& (p =1,2) are the output ampli-
tudes, measured at the fundamental frequency, of the
forward and backward waves, respectively. Moreover,
the relative phase of the two input signals can be con-
trolled externally. Experimentally, we use a high-
frequency model system where the ring consists of a
short nonlinear electrical transmission line" and a linear
section, i.e., a common 50-A coaxial cable; cf. Ref. 10.
By means of directional couplers, both input signals are
fed into the ring and in the same way the two output sig-
nals arising from the forward and backward waves inside
the resonator can be measured.

In the first experiment to be described, the fixed fre-
quency of the incident waves corresponds to the first nat-
ural mode of the resonator. In the symmetric case as
shown in Fig. 2(a), i.e. , if go=0, the output versus input
amplitude characteristics of forward and backward prop-
agating waves qualitatively exhibit the same behavior.
The hysteresis cycles indicate the range of the input am-
plitude where bistability occurs. In case of a phase
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FIG. 2. Experimental output vs input amplitude characteris-
tics of the forward (left column) and backward (right column)
waves in case of the high-frequency resonator: (a) directional-

ly symmetric bistability, cu/2n =48 0MHz, p0=. 0; (b) asym-
metric bistability, ro/2' =48.0 MHz, po =0.48m; (c) asym-
metric multistability, ru/2+=142. 5 MHz, po =0.71m.

difference of go=ac/2, the situation is quite difterent; cf.
Fig. 2(b). Apart from the fact that the output level is

increased to higher values, the backward wave (right
column) still shows a behavior as in Fig. 2(a). On the
other hand, the output signal of the forward-traveling
wave (left column) no longer jumps from a state of low

to a state of high transmission, but now the hysteresis cy-
cle is run in an opposite way. Thus these transfer curves
portray a clear directionally asymmetric bistability. In
addition, Fig. 2(c) illustrates that this feature also occurs
when the system is multistable. For that purpose we
have measured the transmission properties by using the
third natural mode which leads to a pronounced multi-
stability as has previously been observed in a resonator;
cf. Gasch, Wedding, and Jager. ' Now, in case of the
bidirectional ring, the transmission is again asymmetric
when appropriate control parameters are used [Fig.
2(c)]. Here up to four distinct states of transmission can
be observed at a fixed input amplitude.

From unidirectional ring resonators with a quadratic
nonlinear medium, it is known that in case of bistability
and multistability the diN'erent states of transmission can
be described by characteristic soliton modes. ' ' Re-
cently, we have shown that, in the presence of dissipation
and above a threshold value, these stationary dissipative
structures are parametrically generated and amplified by
a pump wave. ' In the following it is examined whether
this idea is also applicable to standing waves and wheth-
er a detailed description of the interaction of counterpro-
pagating waves inside the resonator can also be given in

(b) T IME

-3 crn

FIG. 3. Temporal wave forms as measured at diferent posi-
tions along the nonlinear part of the high-frequency ring reso-
nator: (a) symmetric regime; cf. Fig. 2(a); (b) asymmetric re-
gime; cf. Fig. 2(b). The traveling solitons can easily be detect-
ed by an oblique inspection of the figure.

the time domain.
As an experimental result, Fig. 3 shows the evolution

of the field measured at diferent positions along the non-
linear part of the bidirectional ring resonator. First, in

the symmetric regime and considering the state of high
transmission [cf. Fig. 2(a)], two counterpropagating soli-
tons exist as is illustrated in Fig. 3(a). Apparently, the
pulses pass through each other without losing their iden-
tities, thus indicating the fundamental properties of soli-
tons. " Second, in Fig. 3(b) the case of directionally
asymmetric bistability is studied where the output power
of the forward wave is low and that of the backward
wave is high [cf. Fig. 2(b)]. Clearly, a harmonic stand-
ing wave and a soliton moving to the left, i.e., into the
direction of the backward wave, are observed. Hence it
is found from the experiment that in this case two con-
tradirectional harmonic pump waves are moving in the
resonator where only one of them has generated a soli-
ton. It is obvious that this situation leads to asymmetric
transfer characteristics.

In summary, we have studied the interaction of coun-
terpropagating waves in a medium with second-order
nonlinearity. Theoretically, the Ansatz of first- and
second-harmonic waves yields a set of coupled mode
equations. As a result, it is found that in a medium of
finite length, the standing wave gives rise to a cross in-
teraction between forward- and backward-traveling
waves. This leads to a spatially dependent phase shift'
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which can additionally be controlled by the relative
phases of the input signals. It has yet to be verified
whether an energy transfer can also occur as in the case
of photorefractive media. ' Application of this non-
linear nonreciprocity to a ring resonator brings first ex-
perimental evidence of directionally asymmetric bistabil-
ity and multistability. That nonreciprocal behavior, as
well as the switching in case of bistability, can also be in-

terpreted on the basis of coherent structures, solitons, in

a driven dissipative system. Thus the results of this
Letter which also apply to Fabry-Perot resonators may
be interesting for the fields of nonlinear fiber gyro-
scopes and the soliton laser. ' Further implications
are foreseen for similar soliton-carrying systems such as
Toda lattices and molecular chains and to the second-
harmonic generation in resonators. Nonlinear nonre-
ciprocity is especially interesting in integrated optics
and integrated microwave techniques, where a second-
order nonlinearity may easily be realized.
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