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We present general-relativistic solutions of self-similar collapse of an adiabatic perfect quid. We show

that if the equation of state is soft enough (I —1«1), a naked singularity forms. The singularity

resembles the shell-focusing naked singularities that arise in dust collapse. This solution increases

significantly the range of matter fields that should be ruled out in order that the cosmic-censorship hy-

pothesis will hold.

PACS numbers: 04.20.Cv

The cosmic-censorship conjecture' is generally accept-
ed as the most important current open question in classi-
cal general relativity. ' This conjecture suggests that a
space-time singularity which develops in the future of a
set of regular initial data cannot be seen by an observer
(strong version) or at least by an external observer
(weak version). If the weak version of the cosmic-
censorship conjecture is true, predictability is saved, at
least in the region external to the event horizon, even
when singularities form. If the strong version is true,
predictability is saved everywhere.

By now, several counterexamples to this conjecture
have been found. Most of these examples are based,
however, on collapse of pressureless matter and it is gen-

erally believed that these naked singularities will be
engulfed by an event horizon when pressure is intro-
duced. We have investigated the self-similar spherical
collapse of a perfect fluid with an adiabatic equation of
state p =(I —1)p. We find that when I —

1 «1, a naked
singularity may appear. This solution increases signif-
icantly the range of matter fields that should be ruled out
in order that the cosmic-censorship hypothesis will hold.

We describe the collapse by the total-energy density
p=d/t, the velocity u", and the metric functions g„„=e
and g« = —e'. We use a radial area coordinate r and an
orthogonal time coordinate t. We look for a solution in

which u', X, v, and d are functions of x=r/~t ~. The

!
spherical self-similar relativistic collapse equations are

8ttI du, u" = (e —1)/x+ 8ttd(1+I u'u„)x,

8ttd(1+I u, u') = —e "(1/x + v'/x)+1/x,

8zI du, u'=e

[u'd'+ '(2d+xd')]+ I du'/x+e ~+' [(e ~+" u') '+x(e ~+" u') '] =0

(la)

(lb)

(1c)

(ld)

where the prime denotes a derivative with respect to x.
Regularity at the origin requires u"(0) =X(0) =0. We
make an arbitrary choice of v(0) =0.

The central density, p(0) =dp/t, diverges at t =0 if
do&0 (as we will see later lim d=0 and only the
central density diverges). This singularity is a basic
feature of the solution and it does not reflect any singu-
larity in the solution of Eqs. (la)-(ld). In the rest of
the paper we demonstrate the existence of regular solu-
tions to Eqs. (la) —(ld) and we describe solutions in
which null geodesics originating at the singularity at
(0,0) reach infinity.

The solution is characterized by two parameters, I
and do. For a given choice of these parameters we in-
tegrate Eqs. (la)-(ld) numerically, from x =0 towards
x=~. We consider only I (I b =1.015. (If I & I t, the
relativistic Pen ston-Larson solutions, that we discuss
below, contain trapped surfaces and a black hole forms
before t =0.)

The self-similar solution passes through a sonic point
x, [a test particle on the world line r =

~
t

~ x, moves at
the speed of sound c, =(I —1)'I relative to the fluid].
The solution is generally not regular at x„and the first
or one of the higher derivatives of d and u' diverges
there. For a given I there exist, however, a discrete set
of values of do for which the solution is regular. One of
these regular solutions, the general-relativistic equivalent
of the Penston-Larson Newtonian solution, seems to be
the simplest candidate for a naked-singular solution.
From now on, we shall examine this specific solution.

Figure 1 displays a numerical solution of Eqs. (la)-
(ld) for I =1.01 and dp =0.1144, which corresponds to
the special regular solution. To understand the nature of
our example it is sufficient to consider the solution near
the origin and at infinity. Near the origin the solu-
tion describes an almost homogeneous (d dp d2x~),
uniform (u" = —2x/3I ), Newtonian (2m/r =1 —g„„'
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FIG. 1. Self-similar collapse expressed in Schwarzschild
coordinates for t &0 (I =1.01 and dp=0. 1144): ! u'! (solid
line), 4zx2d =4~pr (dotted line), 4' (short-dashed line),
2m/r (long-dashed line), and ! g«! (dash-dotted line). Note
that 2m jr & 1 for all x values.

= 8trx dp/3 « 1) collapse. The solution goes over
asymptotically to an isothermal [d = d x, 2m/r
= (2m/r) ], constant-velocity (u'= —u ) infall. Just
like the shell-focusing singularities, this singularity has
a Newtonian character, 2m/r ( 1 for all x and hence for
all r (for t (0). The system remains almost Newtonian
and a black hole does not appear before t =0, i.e. , until
the singularity is formed.

The complete self-similar solution contains, however,
an infinite total mass and is not asymptotically flat. To
obtain an asymptotically flat solution we introduce a
cutoff in the density profile at r,p=! tp! x, . The density
drops smoothly to zero at r & r,o. The cutoA destroys
the self-similarity for r ) r, (t ). The inner region,
r (r, (t), retains, however, its self-similar structure. If
r, o is large enough, the cutoA' will not influence the re-

gion near the singularity. In particular,

x~ =exp[[v(x~) —X(xp)j/2]
defines an ingoing radial null geodesic of the form
r =x~!t!.World lines of the form r =x!t! are timelike,
null, or spacelike, for x & x~, x =x~, or x & x~, respec-
tively. If we impose the condition x, & x~, perturbations
introduced at x, & x& by the cutoff' will not influence the
singularity at (r =O, t =0) or its immediate nearby re-
gion.

For large x, v = a ln(x) [where a =I d /(1 —2m/
r ) ] [1+2u /(1 —2m/r ) ]], and the time coordinate is
singular at l =0. To avoid this singularity we trans-
form to comoving coordinates R, T(u =0). We map
(r =O, t =0) to (R =O, T=0). The line T=O is, howev-
er, earlier than the line t =0 (see Fig. 2). On T=0,
+~ —ln(T) (where gTT = —e ) and the coordinate T is
singular. We transform at tf &0 and T, &0 and we

bypass both coordinate singularities.
An alternative transformation is t =t ' '. With this

transformation we bypass the singularity at t =0 and we
describe the solution using different (r, t) coordinate
patches. It is, however, more convenient to switch to
the (R, T) coordinates. The region where (r, t ) and
(R, T) overlap does not have any special significance.
However, comparison of the numerical solutions using
the (r, t) coordinates (and t =t ' ' around t =0) and us-

ing the (R, T) coordinates provided us with an estimate
of accuracy of the numerical calculations. Both calcula-
tions agree for at least four significant figures. These nu-
merical errors are su%ciently small so that they do not
change the nature of the solution and our conclusions.

To form a self-similar solution, we define y =R/T and
we look for a solution where gTT= —e, gg~ =e, D
=pT~, and r =r/T are functions of y only. The comov-
ing self-similar collapse equations are

(I —1), , D' +, D'
+ 2r' + 2(I —1)

yF' (r yr
' +yr —' I =0 (2a)

e ~ 2y rr +(r yr') — —(r yr') +e — (r') — = —8tr(I —1)Dr —1, (2b)
2(I —1)yr, D' A, 2 2(I —1)rr D'

r D I D

D) 2(r —) )/r

(4 D) 2r„-4 4(r —
) )

(2c)

(2d)

where the prime denotes derivative work with respect
to y.

We integrate numerically the comoving equations,
from the vicinity of T=O (i.e., a large value of y), to-
wards y =0 (see Fig. 3). The solution diverges at y, :
D (y —y, ) / ), v= [(21 —2)/(2 —I )lln(y —y, ),
X = —[2/(6 —31 )]ln(y —y, ), and r~(y —y, )
The spherical fluid shells crash into a central r =0 singu-
larity on the world line y, . For T & 0, the singularity is
"massive" and it is surrounded by an apparent horizon.
The mass of the singularity and the size of the apparent

!
horizon (see Figs. 2 and 3) grow linearly with the co-
moving time T:

lim
2m . 2m= lim r &0.

v v T v

The singularity is spacelike for T & 0 and no photons can
escape from it later than T=O. The singularity and its
casual structure resemble the shell-focusing singularities
found in the Tolman-Bondi dust solutions (see, in partic-
ular, Fig. 1 of Ref. 3). A careful analysis reveals that
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