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We present general-relativistic solutions of self-similar collapse of an adiabatic perfect fluid. We show
that if the equation of state is soft enough (F—1<1), a naked singularity forms. The singularity
resembles the shell-focusing naked singularities that arise in dust collapse. This solution increases
significantly the range of matter fields that should be ruled out in order that the cosmic-censorship hy-

pothesis will hold.

PACS numbers: 04.20.Cv

The cosmic-censorship conjecture' is generally accept-
ed as the most important current open question in classi-
cal general relativity. "> This conjecture suggests that a
space-time singularity which develops in the future of a
set of regular initial data cannot be seen by an observer
(strong version) or at least by an external observer
(weak version). If the weak version of the cosmic-
censorship conjecture is true, predictability is saved, at
least in the region external to the event horizon, even
when singularities form. If the strong version is true,
predictability is saved everywhere.

By now, several counterexamples to this conjecture
have been found.?”> Most of these examples are based,
however, on collapse of pressureless matter and it is gen-
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where the prime denotes a derivative with respect to x.
Regularity at the origin requires u#"(0) =1(0) =0. We
make an arbitrary choice of v(0) =0.

The central density, p(0) =do/t?, diverges at 1 =0 if
do=0 (as we will see later lim,_. ~d =0 and only the
central density diverges). This singularity is a basic
feature of the solution and it does not reflect any singu-
larity in the solution of Egs. (1a)-(1d). In the rest of
the paper we demonstrate the existence of regular solu-
tions to Egs. (1a)-(1d) and we describe solutions in
which null geodesics originating at the singularity at
(0,0) reach infinity.

The solution is characterized by two parameters, I
and dy. For a given choice of these parameters we in-
tegrate Egs. (1a)-(1d) numerically, from x =0 towards
x =oco. We consider only I' < T, = 1.015. (If "> T the
relativistic Penston-Larson solutions, that we discuss
below, contain trapped surfaces and a black hole forms
before ¢t =0.)
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erally believed that these naked singularities will be
engulfed by an event horizon when pressure is intro-
duced. We have investigated® the self-similar’ spherical
collapse of a perfect fluid with an adiabatic equation of
state p =(I"—1)p. We find that when I’ —1 <1, a naked
singularity may appear. This solution increases signif-
icantly the range of matter fields that should be ruled out
in order that the cosmic-censorship hypothesis will hold.
We describe the collapse by the total-energy density
p=d/t?, the velocity u’, and the metric functions g,, =e*
and g, = —e". We use a radial area coordinate r and an
orthogonal time coordinate z. We look for a solution in
which u”, A, v, and d are functions of x=r/|t|. The
spherical self-similar relativistic collapse equations are

(1a)
(1b)

(1¢)
(1d)

The self-similar solution passes through a sonic point
x; [a test particle on the world line r =| 7| x, moves at
the speed of sound ¢; =(I'—1) 72 relative to the fluid].
The solution is generally not regular at x,, and the first
or one of the higher derivatives of 4 and u” diverges
there. For a given I' there exist, however, a discrete set
of values of d for which the solution is regular.® One of
these regular solutions, the general-relativistic equivalent
of the Penston-Larson Newtonian solution,® seems to be
the simplest candidate for a naked-singular solution.
From now on, we shall examine this specific solution.

Figure 1 displays a numerical solution of Egs. (1a)-
(1d) for I'=1.01 and do=0.1144, which corresponds to
the special regular solution. To understand the nature of
our example it is sufficient to consider the solution near
the origin and at infinity. Near the origin the solu-
tion describes an almost homogeneous (d = dy—d,x?2),
uniform (u"= —2x/3I'), Newtonian Qm/r=1—g, !
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FIG. 1. Self-similar collapse expressed in Schwarzschild
coordinates for t <0 ("'=1.01 and d¢=0.1144): |u"| (solid
line), 4nx?d =4npr? (dotted line), 4nd (short-dashed line),
2m/r (long-dashed line), and |g,| (dash-dotted line). Note
that 2m/r <1 for all x values.

=~ 8nx2d¢/3<1) collapse. The solution goes over
asymptotically to an isothermal [d=d.x "2, 2m/r
= (2m/r) ], constant-velocity (u"= —u.) infall. Just
like the shell-focusing singularities,?? this singularity has
a Newtonian character, 2m/r <1 for all x and hence for
all r (for £ <0). The system remains almost Newtonian
and a black hole does not appear before ¢t =0, i.e., until
the singularity is formed.

The complete self-similar solution contains, however,
an infinite total mass and is not asymptotically flat. To
obtain an asymptotically flat solution we introduce a
cutoff in the density profile at r.o=]79|x.. The density
drops smoothly to zero at r > r.o. The cutoff destroys
the self-similarity for r>r.(¢z). The inner region,
r <r.(t), retains, however, its self-similar structure. If
reo is large enough, the cutoff will not influence the re-
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where the prime denotes derivative work with respect
to y.

We integrate numerically the comoving equations,
from the vicinity of T=0 (i.e., a large value of y), to-
wards y =0 (see Fig. 3). The solution diverges at y;:
Da(y—y,) "V y=[@2r—2)/Q—0)lin(y —y,),
A= —1[2/(6—30)]In(y —y,), and Fa(y—y,)2©®=30),
The spherical fluid shells crash into a central r =0 singu-
larity on the world line y;,. For T > 0, the singularity is
“massive’”’ and it is surrounded by an apparent horizon.
The mass of the singularity and the size of the apparent
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gion near the singularity. In particular,
xp =expliv(x,) —a(x,)}/2]

defines an ingoing radial null geodesic of the form
r=x, |£|. World lines of the form r =x || are timelike,
null, or spacelike, for x <x,, x =x,, or x > x,, respec-
tively. If we impose the condition x. > x,, perturbations
introduced at x. > x, by the cutoff will not influence the
singularity at (r=0,=0) or its immediate nearby re-
gion.

For large x, v=aln(x) {where a=TId/(1—2m/
Pell14+2u2/(1 —2m/r)-1}, and the time coordinate is
singular at ¢t =0. To avoid this singularity we trans-
form to comoving coordinates R,T(uR=0). We map
(r=0,1=0) to (R=0,7=0). The line T =0 is, howev-
er, earlier than the line t =0 (see Fig. 2). On T =0,
vo —In(T) (where grr = —e"¥) and the coordinate T is
singular. We transform at ¢, <0 and 7,>0 and we
bypass both coordinate singularities.

An alternative transformation is 7=¢'"% With this
transformation we bypass the singularity at 1 =0 and we
describe the solution using different (r,7) coordinate
patches.® It is, however, more convenient to switch to
the (R,T) coordinates. The region where (r,t) and
(R,T) overlap does not have any special significance.
However, comparison of the numerical solutions using
the (r,t) coordinates (and 7=¢'"% around 7 =0) and us-
ing the (R,T) coordinates provided us with an estimate
of accuracy of the numerical calculations. Both calcula-
tions agree for at least four significant figures. These nu-
merical errors are sufficiently small so that they do not
change the nature of the solution and our conclusions.

To form a self-similar solution, we define y =R/T and
we look for a solution where grr=—eY, grr=e? D
=pT?, and 7 =r/T are functions of y only. The comov-
ing self-similar collapse equations are

|-

(2a)
-_ — =2
= D] 8x(—1)DF*—1, (2b)
2¢)
d)

horizon (see Figs. 2 and 3) grow linearly with the co-
moving time 7T~

>0.

e [ 2m _
= lim |—F
y—ys T
The singularity is spacelike for 7> 0 and no photons can
escape from it later than T=0. The singularity and its
casual structure resemble the shell-focusing singularities
found in the Tolman-Bondi dust solutions (see, in partic-
ular, Fig. 1 of Ref. 3). A careful analysis reveals that
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FIG. 2. A schematic space-time diagram of the collapse in
comoving coordinates. The singularity at y, is represented by a
sawtoothlike line. The apparent horizon is denoted by as. The
cutoff is denoted by a long-dash-dotted line. Dashed lines
denote null geodesics that are between y; and y, and escape to
infinity. Dotted lines denote null geodesics that are between y»
and ys; and fall back into the singularity. The short-dash-
dotted line denotes a geodesic that is between y; and y,; and
would have fallen into the singularity, but it escapes to infinity
because of the cutoff.

the singularity at (0,0) extends along a null interval.
The Ricci scalar diverges on the singularity and unlike
the shell-focusing singularities* this singularity is a
strong-curvature singularity.® The massive singularity
that develops later resembles the central Schwarzschild
singularity.

A simple radially outgoing null geodesic of the form
R =constx T [from the singularity at (0,0) to infinity]
exists if F(y)=ypZexp(A—W¥)=1 for some y > y,. For
I'<TI',.=1.0105, there are two solutions y; and y,
[F(y,)=F(y,)=1]. The singularity at (R=0,T=0) is
naked for T <T.. The line R =y T is a Cauchy horizon.
We can, however, complete the solution by analytic con-
tinuation. In this solution there exists an infinite set of
null geodesics that emerges from the singularity. These
geodesics are divided into two families: geodesics that
reach infinity, and geodesics that are trapped by the ex-
panding apparent horizon and fall into the central singu-
larity (see Fig. 2). In the complete self-similar solution
R =y,T behaves like an event horizon and separates the
two families. With a cutoff the space-time is asymptoti-
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FIG. 3. Self-similar collapse in comoving coordinates for
T>0 (I'=1.01 and do=0.1144): |u"| (solid line), 400xpr?
=400772D (dotted line), 4000xD (long-dash—dotted line),
2m/r (long-dashed line), 7 =r/T (short-dash-dotted line), and
F(y)=y2grr(»)/| grr(y)| (short-dashed line).

cally flat and the outgoing geodesics reach null infinity.
The null geodesics diverge faster (compared to a self-
similar region) in the exterior region (see Fig. 2). As a
result, some of the null geodesics of the second family,
which emerge from the singularity between y, and y;, es-
cape infinity, instead of falling into the singularity (see
Fig. 2). The event horizon is located between R=y,T
and the apparent horizon.

The red shift from a source located at the center (r
=0 and r <0) diverges like [r.(r=0)/|7|1% as 1— 0.
Therefore, a distant observer will see the singularity only
if it has an infinite luminosity. However, the dynamics
of causal future of the singularity (the domain y <y,)
depends on boundary conditions at the singularity, and is
not predictable from the initial data on ¢o. The solution
that we have described is based on an analytic extension
of the solution from y >y, to y <y, which is equivalent
to the assumption that no perturbations are coming out
from the singularity. Clearly, one can imagine bound-
ary conditions that will lead to different solutions at
y <y which will influence an external observer.

We have described a family of general-relativistic
solutions for self-similar spherical collapse of an adia-
batic perfect fluid that include naked singularities and
provide a counterexample to the cosmic-censorship
hypothesis. Our example resembles the shell-focusing
naked singularities that appear in pressureless collapse in
spite of the fact that our matter field has nonvanishing
and unbound pressure.
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