
VOLUME 59, NUMBER 19 PHYSICAL REVIEW LETTERS

Optical Analog of a Kicked Quantum Oscillator
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Light propagation in a discrete waveguide is the classical-optics analog of the quantum dynamics of a
kicked oscillator. A specific model is introduced which shows subdiftusive beam spreading in the ray-
optical limit. At finite wavelength, the beam is localized in both position and momentum space through
wave interference eAects. It is argued that the localization phenomenon is accessible to a laboratory ex-
periment using conventional laser systems.
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The quantum dynamics of classically chaotic Hamil-
tonian systems has attracted great interest in recent
years. ' Much work has been devoted to the study of
the kicked quantum rotator first introduced by Casati et
al. This model displays the remarkable phenomenon
of quantum localization in momentum (energy) space, in

contrast to the unbounded diA'usive growth of energy in

the classical system. Grempel, Prange, and Fishman es-
tablished a close formal relationship to Anderson locali-
zation in a random potential. Energy localization has
been predicted for more realistic systems, such as a dia-
tomic molecule and a highly excited hydrogen atom' in

a microwave field. However, so far the eAect has not
been observed in any experiment.

Here I propose to study localization in an optical ana-
log of a kicked quantum oscillator. It is shown that a
beam of light passing through a discrete anharmonic
waveguide is localized in both position and (optical)
momentum space. The width of the localized beam
scales with the wavelength k of the light, which plays the
role of Planck's constant. In the ray-optical (classical)
limit X 0, the beam spreads subdiAusively. By varia-
tion of the wavelength and the dimensions of the
waveguide, both the classical (delocalized) and the quan-
tum (localized) regimes are accessible to standard opti-
cal technology. Besides providing the first experimental
confirmation of the phenomenon, such an experiment
would contribute to a better understanding of the in-
terference eAects which lead to localization. In this
sense, my approach is similar in spirit to some recent
studies of Anderson localization in classical wave prob-
lems. ' "

I consider a chain of identical optical elements,
aligned along the z axis with equal spacings zo. The ele-
ments are assumed to be purely refractive and ideally
thin. For simplicity, I take them to be cylindrical, with a
refractive index variation V(q) only in one transverse
direction q. For a quadratic function V(q) =q /2f, this
defines a standard lens waveguide. ' The propagation of
a light ray along the chain is described, in the Hamil-
tonian formulation of geometrical optics, by phase-space
variables (q,p), where p =no(dq/dz) is proportional to

hn(q, z) =V(q) g 6(z —iz ).
( = —oo

Obviously, if z is regarded as time, this is the Hamiltoni-
an of a kicked oscillator. There is a one-to-one
correspondence between paraxial optics and nonrelativis-
tic mechanics both in the full wave-optical (quantum)
theory and in the ray-optical (classical) limit. ' In
wave-optical terms, a scalar wave field y(q, z) propa-
gates through the waveguide according to the paraxial
wave equation

it By/Bz = —
—,
' A'B~zy+ any

This is Schrodinger's equation with Planck's constant h

replaced by the vacuum wavelength X, X =X/2tr. The
wave field y„(q) at z =nzo is mapped to the wave field

y„+ ~ (q) at z =(n+1)zp by the one-step propagator

U =exp[ —i (p'/2X)zo] exp[ —i V(q)/X]. (3)

Here p = —i XB~ is the optical momentum operator.
Equation (3) defines a quantum map of the type first
studied by Berry et al. '

I choose for V(q) a piecewise parabolic double-well
potential:

[(q+ 2qo) ' —qo]/2f for q & —q, ,

V(q) = ~ [qo —
q ]/2f for q & qo,

[(q —2qo) —qo]/2f for q & qo.

(4)

This choice is motivated by both practical and theoreti-
cal considerations. Practically, a refractive index varia-
tion of the type (4) could be realized by joining together
two convex (for q & qo ) and one concave (for q & qo )
cylindrical lenses with focal length f in such a way that
the pieces fit smoothly at q = ~qo. Theoretically, the

the slope of the ray. The free-space refractive index, no,
will be set equal to unity. In the paraxial approximation,

~ p ~
(& I, the ray equations are then Hamilton's equa-

tions corresponding to the optical Hamiltonian

II(q,p, z) = ,' p'+—ttn(q, z),
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potential (4) is convenient because the corresponding
area-preserving map [Eq. (5) below] shows a slow
(subdiff'usive) escape rate of trajectories to infinity, even
in the unbounded chaotic regime. This is important in
order to have a well-defined classical long-time behavior
which can then be compared to the quantum dynamics.

This model is oversimplified in several respects. First-
ly, I neglect any efrects from the boundaries of the opti-
cal elements: The potential V(q) in (4) extends along
the whole q axis. A real experiment would further suffer
from reflection losses, which may have to be compensat-
ed for by introduction of amplification into the chain.
Finally, in an experimental realization it may be more
convenient to work in a ring geometry rather than with a

linear chain of elements. A well-defined number of
passes could then be achieved by use of a short laser
pulse. All of these points would have to be taken into ac-
count for a detailed comparison with future experiments.
In the present work my goal is to identify the main eAect
and to estimate the range of parameters where it could
be observed. Therefore, I will consider only the simple
model given by (I) and (4).

Let me briefly describe the ray-optical limit X 0.
The ray equations corresponding to (4) are given by a
piecewise linear, continuous map of the (q, p) plane. I
introduce scaled variables x =q/qo and y =p/po, where
po=qo/zp is a typical slope in the waveguide. Then the
map is

&n+1

yn+1

1 &n

I x.+y. I &I,1+& yn

In+1

yn+ i,

f

1 Xn 0 )1,
x„+y„'I-X 1-X (5)

(q ')„,(p ')„~n'. (6)

Here the brackets denote ensemble averaging and n is
the number of iterations along the chain. I will often
refer to n as "time. " The exponent a in (6) is less than
unity, a=0.67. This subdiffusive behavior can be un-

derstood as follows. I write the time evolution of some
coordinate, say p, as a generalized diflusion law with a
time-dependent diff'usion constant D(n):

(p')„=D(n)n (7)

To estimate D(n), I note that the motion in the elliptic
regions

I
x+y

I
& 1 is completely regular. Only trajec-

tories within
I
x+y I

& 1 contribute to the spreading of
the ensemble. Therefore, D(n) is proportional to the
fraction of the ensemble with coordinates in the hyper-
bolic region. If we further assume uniform spreading,
then this fraction decreases as (p )„'i, since Ix+y I(1 defines a quasi one-dimensional strip in the phase

and y=zp/f If 0 & .y & 4, the map is elliptic in the re-
gions

I
x+y I

& 1. Points iterate around the stable fixed
points (+' 2,0) at angular frequency co =are cos(1
—y/2). In the region I x+y

I
& 1, the map is hyperbol-

ic with an unstable fixed point at the origin. In the
neighborhood of the origin the motion is chaotic because
of homoclinic crossings of the stable and unstable mani-
folds. ' The global behavior then depends on whether
there exists an invariant curve around the origin, which
confines the stochastic motion. The presence of such a
curve is determined by the parameter y in a complicated
way, which is only partly understood. ' In particular,
the usual notion of a stochasticity threshold associated
with the breaking of the last Kol'ogorov-Arnol'd-Moser
curve does not apply to the piecewise linear map (5). If
no invariant curve exists, we find numerically that an en-
semble of trajectories launched close to the origin
spreads both in position and momentum according to a
power law

plane. Inserting into (7) we obtain a= —', , which is in

good agreement with numerical calculations at various
(diffusive) values of y.

'

Now I ask how the diff'usive behavior of the ray map
(5) is aftected by interference eff'ects due to a finite
wavelength k. The analogy with the kicked rotator leads
us to expect some kind of localization phenomenon.
However, my model is diA'erent from the rotator in

several respects. In particular, the spectrum of the un-
perturbed system [V=0 in (3)] is continuous rather than
discrete. As a consequence, the main results on the dy-
namics of the kicked quantum rotator —the occurrence
of quantum resonances and the mapping to the Ander-
son problem —cannot be carried over to my case.
Therefore I undertook some exploratory numerical cal-
culations. Before discussing the results, let me add a re-
mark concerning the natural observables in the
waveguide. In the classical limit, the evolution of (q )„
and (p )„was used as a measure for phase-space
difTusion. Now the ensemble average is replaced by the
quantum-mechanical expectation value in the state
y„(q). Then (q ) is just the mean square width of the
beam. To see the physical significance of the "kinetic
energy" (p ) in the optical context, I write

where i'(p) is the Fourier transform of the wave field
y(q). If p =q/Xfo, where fo is the focal length of a
focusing lens, then

I i'(p) I gives the intensity distribu-
tion in the focal plane of the lens. ' Thus (p )'i is pro-
portional to the focal spot size, which is commonly used
as a measure for laser beam quality.

Some of the results for (p )„are shown in Fig. 1. The
uppermost curve is the classical power law (7). The
curves at finite k were obtained by iterating the wave
map (3) numerically, with fast Fourier transform on a
grid of 2 ' points. The propagator U depends on two di-
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the width of the central defocusing lens. For X=10.6
pm, I found 8' =3.8q0=1.9 cm. The case A, =6.5 pm
(second curve in Fig. 1) is intermediate. The growth of
energy is much slower than for X =0, but no saturation
was observed up to n =1000. Thus we see a clearcut
transition between classical and quantum behavior over a
few hundred iterations, which occurs in the range of
wavelengths 3.4 pm ~ X ~ 10.6 pm. This range is clear-
ly accessible to standard laser systems.

For a quantitative estimate of the wavelength depen-
dence of the saturation energy, I adopt a simple heuristic
argument given by Chirikov, Izrailev, and Shepelyansky,
and Casati et al. , in the context of the kicked rotator.
I extended their derivation to the case of subdiAusive
classical energy growth, (p )„~n', and obtained

0
0 100 200 300 400 500

FIG. 1. Scaled energy &(p/po) &„of the quantum oscillator
as a function of the number of kicks. The uppermost curve is

the classical limit, X=0. The wavelength for the middle curve
is X =6.5 pm, for the lower curve X =10.6 pm.

E, = (pn/qo) W, = (W, /zo) . (10)

This indicates that localization is uniform in phase space.
The width of the localized beam is typically a few times

mensionless parameters

o =Xzp/qo, r =qo/Xf.

The classical parameter is y =o.z. The dimensions of the
waveguide were fixed by setting the width of the central
defocusing lens 2qo =1 cm, the focal length f=50 cm,
and the distance between elements z0=100 cm. Then
@=2, and the ray dynamics is subdiAusive as described
above. The initial condition was a Gaussian centered on
the optical axis, ttto(q)=exp[ —(q/d) ] with A=qo/2.
The wavelength was varied between 1.3 and 26 pm. For
short wavelengths (k ( 3.4 pm) and short times
(n ( 100) the classical and the quantum results for (p )„
are almost indistinguishable. This confirms that my cal-
culations correctly reproduce the ray-optical limit X 0.
For 1=10.6 pm, which is the wavelength of a CO21aser,
the picture is drastically different (lowest curve in Fig.
1). At n =100, the energy differs from its classical value

by a factor of 2. After 300 iterations, the growth satu-
rates and (p )„starts to oscillate around some mean
value, which I call the saturation energy E, (X). The
width of the beam, (q )„, similarly saturates at some
value W, (X). The wave functions appear to be exponen-
tially localized in both position and momentum space. '

In terms of the scaled variables (x,y) introduced above
(5), E, and W2 are equal to within 30%, i.e., we have the
following approximate relation:

With a= —,
' from (7), this gives E, er. l/k. According to

(10), the width of the localized beam should then scale
as W, (X) ~k 't . My data for various values of X be-
tween 10.6 and 26 pm are consistent with these relations.
Of course, this does not exclude that a transition to a
delocalized regime with unbounded energy growth may
take place at some smaller, but finite, wavelength. Fur-
ther numerical work is required to clarify this question.

In summary, I have shown that diA'usive beam spread-
ing in an anharmonic optical waveguide is localized
through wave interference efrects. By analogy with
mechanics, this provides a new example of energy locali-
zation in a driven quantum oscillator, which has the
great advantage of being directly realizable in a labora-
tory experiment.

It is a pleasure to thank H. Spohn for many valuable
suggestions on the manuscript, and K. J. Witte for very
useful discussions.
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