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Bistability Driven by Weakly Colored Gaussian Noise: The Fokker-Planck Boundary Layer
and Mean First-Passage Times
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We develop a singular perturbation approach to the problem of first-passage times for non-Markovian
processes driven by Gaussian colored noise near the white-noise limit. In particular we treat the problem
of overdamped tunneling in a bistable quartic potential in the presence of Gaussian noise of short corre-
lation time r. The correct treatment of the absorbing boundary yields a lowest-order correction propor-
tional to i' with a proportionality constant involving the Milne extrapolation length for the Fokker-
Planck equation, given in terms of the Riemann g function.
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The question of time scales in nonlinear stochastic-
dynamic systems has come under intense scrutiny in re-
cent years. Among these various time scales are the
correlation time, ' the time scales associated with the
spectrum of an appropriate time-development operator,
and mean first-passage times (MFPT's). In many ap-
plications the underlying stochastic process can be taken
as a Markov process —for example, a Markov diffusion
process defined by a Fokker-Planck equation (FPE)—but there is also interest in the time scales involved
with non-Markovian processes. Non-Markovian pro-
cesses, often nonlinear dynamical systems perturbed by
colored-noise forces, serve as models for the effect of
pump noise in lasers, the influence of environmental
fluctuations on chemical and biological systems, fluid-
turbulence studies, and a regularization of quantum
field theories.

Many recent theoretical, numerical, and experimental
studies have concentrated on the fundamental question
of the lifetime of a metastable state perturbed by a
colored Gaussian noise, and one particular model has re-
ceived the greatest attention: overdamped tunneling in a
bistable quartic potential in the presence of weakly
colored Gaussian noise. The model is defined by the
stochastic differential equation

dx/xt =f(x)+u(t),
where f(x) is the force due to the bistable potential
v(x):

f(x) =x —x d V(x)
dx

V(x) = 4x —~x

(3)

and intensity D:

(u(t)u(s)) =(D/r) exp( —
~
t —s l/r)

These equations are written in a dimensionless form
~here time is measured in units of the deterministic
relaxation-time scale in the wells of the quartic potential,
and the state variable and noise amplitude have been re-
scaled in terms of the parameters in the potential. In the
limit r 0, the state variable x(t) satisfies a stochastic
differential equation driven by a Gaussian white noise,
and it is then a Markov diffusion process whose transi-
tion density obeys a FPE. Current studies of the MFPT
focus on the transition from one well of the potential
(e.g. , at x =1) to the unstable point (x =0), and for the
most part these studies have centered on the development
of an effective" FPE for the time development of the
probability distribution of x(t). ' There are presently
four such effective FPE's in the literature which have re-
cently been summarized and compared in Ref. 10.

Rather than searching for an effective Markov process
to describe x(t), we consider the joint stochastic process
consisting of the state variable, x, and the Gaussian
colored-noise variable, an Ornstein-Uhlenbeck process.
The joint process is Markovian, and thus the first-
passage problem may be formulated according to the
standard techniques for systems whose transition density
obeys a FPE. The MFPT problem cannot be solved ex-
actly as in the case of a one-variable Markov diffusion
process, however, and so we develop a systematic pertur-
bation expansion of the MFPT in powers of the correla-
tion time of the Gaussian noise.

Equations (1)-(3) are rewritten in terms of the simul-
taneous stochastic differential equations

dx/dt =f(x)+e 'ctz(t),

and the noise u(t) is Gaussian with correlation time r dz/dt = —e z+ J2e 'g(t),
(4)
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where g(t) is a 6-correlated Gaussian white noise. The dimensionless correlation time of the Gaussian process z(t) is
r =e, and the dimensionless intensity of the noise is cr= JD. The FPE for the time development of the probability
density of the joint process is

d, p(x, z, r) =[a 'c), (z+ci, ) —e- 'crz8 —c) f(x)]p(x, z, r) (s)
We will treat e as a small parameter, thus considering
the situation where the memory-time scale of the fluc-
tuations is much less than the deterministic relaxation-
time scale imposed by the quartic potential.

The MFPT problem is usually expressed in terms of
the adjoint FPE, but it can also be formulated in terms
of a stationary density associated with the stochastic dy-
namics of the system. " The physical idea is to inject in-
dependent (i.e., noninteracting) particles into the system
at a fixed rate with annihilation at the absorbing boun-
daries, and let the total density build up to a stationary
state. The average total number of particles present in

the stationary state is exactly the product of the rate of
introduction and the MFPT to the boundaries. Thus, for
the dynamics at hand, the MFPT of the variable x from
the well at x =1 to the unstable point at x =0 may be
obtained by solution of the equation

[e 'ci, (z+ c), ) —e 'az 8„—d„f(x)]G(x,z)
= —6(x —l )po(z) (6)

for G(x, z), the total average stationary density of parti-
cles present when they are introduced at unit rate at
x =1 with the stationary distribution of the noise vari-
able z: = —~(x —i)pp(z), (9)

but, in the case at hand, the absorbing boundary is not,

correctly specified by the demand that G(O, z) =0 for all
values of the noise variable z. The absorbing boundary
for this problem is a boundary in the phase space
spanned by x and z, and the appropriate boundary condi-
tion is G(0,z) =0 only for z & 0. Physically, this means
that there are no particles entering the region x )0, i.e. ,
the x component of the incoming probability current
[[e 'crz+f(x)]G(x, z) for z) 0 at x=0] vanishes on
the absorbing boundary. The other boundary conditions
are that the density vanishes as either x ~ or
z +

The perturbative treatment of the problem proceeds
according to the techniques described by Horsthemke
and Lefever ' for weakly colored Gaussian noise forces,
and by Blankenship and Papanicolaou' for more general
"fast" noises. This technique is essentially that used to
reduce the Klein-Kramers equation (describing Browni-
an motion in phase space) to the Smoluchowski equation
(for Brownian motion in configuration space) near the
high-friction limit. ' Writing Eq. (6) as

(E' Lp+ e L ] +L2)G(x,z)

pp(z ) = (2n) '~'exp( —z '/2). (7) where the difrerential operators L; are
By introducing the particles with the stationary distribu-
tion of the noise variable, we assume that the noise is al-
ways in its stationary state. The MFPT is given by the
total average number of resident particles:

T=„I d.„r d. G(,, ).

Lp=8, (z+8, ), L, = crzcl„—

L2= —d„f(x),

we insert the Ansatz

(io)

The statement of the problem is not yet complete,
though, because the partial diff'erential equation for
G(x, z) [Eq. (6)l requires the specification of boundary
conditions. The boundary conditions on the density are
usually taken to be vanishing on the absorbing boundary,

G(x, z) =Gp(x, z)+EG|(x,z)+e G2(x, z)+

into Eq. (9) and collect terms according to powers of e.

!
The coefTicients of the expansion obey the equations

L G„(x,z) = —L,G„—1(x,z) —L2G„—2(x, z) —8„26(x—i )pp(z),

where G„(x,z) =0 for n & 0. At this point it is convenient to introduce the eigenfunctions and the spectrum of Lp.

(i2)

(i4)

For n =0 and n = i, Eq. (i2) yields

Lpp„(z) = —np„(z), p„(z) =H„(z)pp(z), (i3)
where the Hermite polynomials H„(z) are fully described by Abramowitz and Stegun. ' The Hermite polynomials and
the eigenfunctions satisfy the useful recursion relation

zp„(z) =p„+1(z)+p„ 1(z).

Gp(x, z) =pp(z)rp(x), Gl(x, z) =pp(z)rl(x) —pl(z)cr6 rp(x), (is)
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where rp(x) and r i(x) are yet to be determined.
With use of Eqs. (15) and the recursion relation Eq. (14), the equation for G2(x, z) is rewritten

LpG2(x, z) =pp(z) [ —ci(x —1) —o c1„rp(x)+t)„f(x)rp(x)]+pi(z)crc) r 1( x) —p2(z)cr |1 rp(x), (16)

—cl„f(x )rp(x ) + a 8„'rp(x ) = —8(x —1). (17)

In general, the partial differential equation satisfied by
the "reduced" density r„(x), appearing as the coefficient
of pp(z) in the solution for G„, will arise as an integrabil-
ity condition for the partial diffusion equation for G„+2
obtained from the expansion Eq. (12). The functions
r„(x) are called the reduced densities because the mar-
ginal (or reduced) density for the x variable, denoted
r(x) and obtained by the integration of the full solution
G(x, z) over z, has an expansion in powers of e of the
form r(x) =rp(x) + er„(x)+ e r„(x)+

The singular perturbation expansion continues by our
expressing the solution for G2 in terms of the functions
p„(z) and r„(x) (n =0, 1,2). The equation for G3 is

then rearranged with use of the recursion relation Eq.
(14), into an expansion involving the variable z only
through the functions p„(z) (n =0, 1,2, 3). The integra-
bility condition, that the coe%cient of pp must vanish,
leads to the equation for r i (x),

l„cf( )xr ( 1)x+ cr' )„cr2( 1)x=0. (18)
The technique should now be clear, and we quote the re-
sult for the next order in the reduced density:

[—8 f(x)+cr'cl„']r~(x)
= —cr' cl„[—d„f(x) + a'c)„']cl„ro(x). (19)

Before we set out to solve Eqs. (17)-(19), it is neces-

and the fundamental feature of this singular perturba-
tion theory comes into play. The operator Lp has a 0 ei-
genvalue (with eigenfunction pp) and is thus not general-
ly invertible. It is invertible, however, on the subspace of
functions of z spanned by the p„(z)'s for n) 1. Hence,
in order that we be able to solve Eq. (16) for Gq, the
coeScient of pp must vanish. This yields a partial dif-
ferential equation for r p(x ):

sary to specify the boundary conditions for the reduced
densities. The boundary conditions for the absorbing
boundary are really imposed on the current in the full
phase space, and they do not reduce directly to some
boundary conditions on the reduced densities. In order
to derive the implications of the full boundary conditions
on the reduced densities, one must solve the so-called
"boundary layer" problem. In essence, this involves our
exactly solving the force-free analog of Eq. (6) near the
absorbing boundary x =0 in the full phase space. This
exact solution has been derived, but the details will be
presented elsewhere. ' The result for the problem at
hand is simply summarized, through order e, by the im-
position of the reduced boundary condition

(2o)r(0) = eakMr'(0)

on the total reduced density r(x), where XM is the
"Milne extrapolation length" for the FPE given in terms
of the Riemann g function by

A. M
= —g( —,

' ) =1.460354. . . . (21)
The Reimann g function appears infrequently in physics
problems, but we remark in passing that this is not the
only connection between the g function and stochastic
processes. ' We also mention that while reduced bound-
ary conditions like those above were conjectured by
Chandrasekhar ' in 1943, the absorbing boundary condi-
tions in phase space were written down by Wang and
Uhlenbeck' in 1945, and there have been some very ac-
curate numerical and analytical ' approximations, the
exact Milne extrapolation length has eluded computation
until very recently (see Ref. 16 and the independently
derived result of Marshall and Watson ).

We are now in a position to solve the problem at hand.
The solutions to Eqs. (17)-(19) [with the boundary con-
ditions implied by Eq. (20)] are

rp(x) = '

pl
cr 'exp[ —V(x)/o ] „dx'exp[V(x')/o ], x) 1,dp

pX
o exp[ —V(x)/cr ] dx'exp[V(x')/o ], 0 (x( 1,

p

(22a)

r i(x) =XMa ' exp[ —V(x)/cr'],
X

r2(x) =8(x —1)+V"(x)rp(x) —J dx'rp(x') V'(x') V"(x')cl„g(x,x'),
(22b)

(22c)

where g(x, x') in Eq. (22c) is the Green's function for the white-noise Fokker-planck operator with vanishing boundary
conditions at x =0 [i.e., g(x, x') is just rp(x) given by Eq. (22a) above with the 1 s in the first integral and the limits
on x replaced by x'l.

The MFpT is evaluated to second order in e from Eq. (8) and the expressions above, where we note that only the
coefficients of pp in the G„s contribute to the MFPT. The complete expression is somewhat cumbersome, but it can be
greatly simplified if we restrict ourselves to the small-noise-amplitude regime (a «1). Then the inteRrals are easily
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evaluated by the method of steepest descent, and the
MFPT is

1T= exp
4cr'

]/2

1+ — XMe+ —, e + - . .2 3 2

(23)

In the above we have neglected terms of order t.. with

exponentially small coefficients [i.e., terms containing a

factor of exp( —I/4cr ) inside the bracket in Eq. (23)]
and terms with O(cr ) coefficients.

The general technique for our systematically finding

corrections to quantities near the white-noise limit

presented in this Letter is applicable to many problems.
For example, in the more general multiplicative noise

problem, where o is a function of x, the expansion
presented here can be similarly carried out. With ab-

sorbing boundaries located at deterministic critical
points, the reduced boundary condition Eq. (20) carries
through exactly. The approach presented here also has
some advantages over the eff'ective FPE approach '
mentioned earlier. An important problem with all of the
effective FPE's is their failure to yield any small-cor-
relation-time corrections for free processes, i.e. , when

f(x)=—0 in Eq. (1). The singular perturbation method

developed here does not suAer from this malady. In fact,
the MFPT for free process driven by a colored Gaussian
noise, computed by the methods presented here, agrees
qualitatively with the exact solutions for some non-

Gaussian colored noises like the dichotomous Markov
process. ' '

Finally, it is important to stress that the efrective
FPE's never pick up the leading-order corrections to the
MFPT proportional to z'~ which result from the correct
treatment of the reduced boundary conditions at the ab-

sorbing boundary. tIn the context of the problem at
hand, we note that the correction of order t. =z derived

from most of the efI'ective FPE's agrees' with that in

Eq. (23).] This new result calls for new numerical and

analog experiments on the MFPT for bistable Aows in

the small-noise-correlation-time regime. Neglect of the
O(r' ) term can be misleading if the next higher-order
correction proportional to z is negative so that one might
conclude that small correlations decrease a MFPT (for
an example, see Doering ). The reduced boundary con-

ditions imply that the MFPT from any point to a deter-
ministic critical point always has a positive lowest-order
correction: Very small Gaussian noise correlations in-
crease transition times to deterministic critical points in

one-dimensional systems.
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