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The problem of finding the best path in a random medium is investigated. If the random medium is
allowed to undergo slow drifts, the best path can be drastically altered. The scaling of the excited states
is also discussed. A host of new exponents are found for the 2D problem. The implications for growing
surfaces are also pointed out.

PACS numbers: 05.50.+q

The following question is asked: In a system with
quenched random disorders, if for some reason these dis-
orders are no longer constant but undergo very slow
drifts, how (un)stable are the corresponding ground
states? For a 2D spin-glass model, a partial answer was
recently given by Bray and Moore. '

It is plausible that the quenched disorders are them-
selves dynamical variables, albeit on very long time
scales and with very small amplitudes. The reasons may
be, e.g. , aging and deterioration, interactions among the
disorders, feedback reactions from the "fast" dynamical
variables, strain release, etc. Ground states of random
systems are generally very susceptible to these small
changes in the random environments, since there are
states whose energies are very close to that of the ground
state, but the configurations can be very diAerent. Find-
ing the ground state of a random system is an optimiza-
tion problem. In a broader sense, a similar question can
be asked: If the input constraints of an optimization
problem are slightly varied as a result of, e.g. , compro-
mises (where they are allowed. ), limited precision in

specifying the constraints, etc. , how much diAerent
would the final solution be?

In this Letter I apply the above ideas to a well-studied
model: directed polymers in a random matrix. The
problem can be reduced to the following: In a 2D square
lattice each bond is given a random value (energy). Let
one end of every path be fixed at the origin and all the
paths be extended in the direction which is called t (Fig.
1). The constraint is that the paths cannot go backwards
in t. The task is then to find the path with lowest energy

(best) among all possible path configurations. The tech-
nique which I use in this study is called the zero-
temperature transfer-matrix method, which has been dis-
cussed previously. ' At the level t, the best path can end
anywhere in x and the displacement was shown to scale
as t . If we specify also the endpoint at the level t, say,
at xo, then there is also an optimal path with two ends
specified. In this manner to every point x at the level t
there is associated a local optimal path that started from
the origin. The best path is then chosen from all these
local optimal paths. The ensemble of these was shown to
have a ultrametric family-tree structure.

Let us prepare two sets of random disorders. Denote
collectively as R a set of random values over all the

(0,0)

FIG. l. In this square lattice each bond is given a random
value; at the level t there are t points and each of them can be
connected to the apex of the triangle in a unique optimal way.
A few local optimal paths are shown; one path is the overall
best path.
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FIG. 2. Inset: Semilogarithmic display of the jump proba-

bility (x;~x2 events). Upper curve: The mean jump distance,
and a line with a slope 0.83 guides the eye. Middle curve: The
mean energy diff'erence of the same path (old best path) in two
different environments; the line has a slope of 0.48. Lower
curve: The mean energy gain of the best path with respect to
the old best path when both are in the new environment; the
line has a slope 0.65.

bonds on the lattice. Let R12=Rp+ARi 2, where the Rp
are distributed uniformly between 0 and 1, while the h, R
are between 0 and 6 (6«1). This procedure ensures
that the two sets have an identical distribution, with
large overlaps (strong correlation). In the two diAerent
random environments it is found that two corresponding
best paths (located at xl and x2, respectively) can be
different. In Fig. 2, I present the mean displacement
(average over

i x I
—xq i, including cases x I =xq). We

see that the mean displacement scales as t', a=0.83
+ 0.02. The statistical errors are smaller than the size
of the symbols; the quoted errors are only from a subjec-
tive assessment. Incidentally, I have also checked that in
the finite-temperature version of Kardar, the mean dis-
placement resulting from two difT'erent temperatures
rather than diferent sets of disorders scales as t . I
have observed that the above displacement is linearly
proportional to 6', for small values of 6. For 6 increasing
to a large value, say, 2, i.e., when the correlation between
the two sets becomes small, a approaches 3, a value that
would apply when the two sets are completely indepen-
dent. There appear to be two regions, for small and
large 6, respectively. For small 6, when the correlation is
strong, I believe that the exponents are universal. In the
inset of Fig. 2 I present the probability that a jump actu-
ally happens (xlax2). It can be seen that a small per-
turbation of strength 6 will probably destabilize the
ground state. This probability increases very slowly with
the length of the paths; in fact, it is consistent with a log-

arithmic law. For a wide range of 6 (0.001-0.8), the re-
sults are qualitatively the same. This implies that al-
though the destabilization can happen, there is also a
resistance to it; i.e. , there is a strong memory eII'ect (in
Hopfield's sense?) and it is losing only logarithmically
with the length t. In any case, the events x&&x2 do
occur with finite probabilities.

We can understand the large value of a qualitatively
in the following way. In Ref. 3 it is shown that the en-
semble of the paths has a family-tree structure. If the
random environment changes, it is unlikely for the best
path to jump a small distance, since in its neighborhood
the paths are strongly correlated, i.e., they have a long
ancestry in common. Thus the relatives of the best path
are unlikely to take advantage of the changes in the envi-
ronment. That is, the best path is stable with respect to
its own family and this is why there is a resistance to the
jump. On the other hand, the other families of paths can
win over the present best path in a new environment.
They have little overlap with the original best path and it
is more likely for them to accumulate enough energy
gains, and, of course, they are usually located far away.
We thus learn that the best path either stays where it is
or jumps a long distance away. The above exponent is
the result of these two competing factors. It is also il-
luminating to let R undergo a continuous random walk; I
have observed that the best path has an intermittent be-
havior of the Levy flight type.

In a new environment the best path may still be a local
optimal path. Since we have only the information of the
end point x of an optimal path, we would like to know if
all the parts of the best path stay in their original posi-
tions. In Fig. 2 I also plot the energy change of the same
path in the difIerent environments; it scales approximate-
ly as t ' . This implies that the local optimal path now
overlaps with the old best path, at least predominantly.
It is then natural to ask what is the energy advantage, in
the new environment, to motivate a jump of the best
path (when jumps do not occur, the advantage is zero,
and this case is also counted). In Fig. 2 we see that the
energy advantage scales against t with an exponent close
to 3 ~ Unfortunately, I do not have a convincing argu-
ment at present to explain this exponent or to relate it to
other exponents.

What are the possible requisites that make a local best
path a would-be new best path? Is the candidate path in
the old environment one of the lowest excited states,
which are defined as those nearest to the best path in en-
ergy? Thus we are led to examine the lowest excited
states. In the following analysis, I do not change the
random environments. I first check the energies of the
lowest excited states with respect to the ground-state en-
ergy. In Fig. 3 we find that the first two energy gaps de-
crease slowly with increasing path length. Then it seems
that they approach separate constant values, though, nu-
merically, one cannot exclude very small logarithmic
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FIG. 3. The upper two curves are the mean distance of the
first two excited-state paths from the ground-state best path
(first and second going upwards); the line has a slope —,

' and it
serves as a guide to the eye. The two lower curves are the first
two corresponding energy gaps.

corrections. It is likely that other (low) excited states
behave similarly and it appears that we are dealing with
a problem with discrete spectra. Thermal fluctuations
would have to overcome these finite energy barriers to
destabilize the ground state. Next let us ask how far
away these lowest excited states are located from the
ground state. In Fig. 3 we see the mean displacements of
the first two excited paths from the best path. They
scale against the path length with an exponent very close
to —,

' . Intuitively, one can understand this in the follow-

ing way: Immediate neighbors of the best path are too
few to be chosen as lowest excited states; because of the
family-tree structure, we expect that lowest excited
states are among the relatives of the best path in an en-

larged neighborhood. However, I cannot explain why it
is with that exponent nor whether all the energy gaps
should approach constants.

The above results allow us to define the family concept
more precisely and I advance the following conjecture:
All the local optimal paths are grouped into families;
each family has its characteristic energy (i.e., difl'erences

of the energies are constant, and thus one energy value is

enough to represent the family); the size of the family
grows as t ' and this in turn implies that the total num-

ber of the families grows as t, the total number of the
local optimal paths being proportional to t. From Ref. 3
we learn that the family tree is hierarchical: Families
are descendants of superfamilies and so on and, in fact,
they all have the same ancestor (the origin). Thermal
fluctuations will aflect the best path in its own family, a
stronger fluctuation (at a higher temperature) will probe
the relatives of this family, and so on. I have performed
some preliminary finite-temperature simulations in

which I have calculated the relative fluctuation
((x —(x)) ), where the inner angular brackets denote

the thermal average, and then there is an average over
independent samples. For strong disorders (or low tem-
peratures), this quantity clearly deviates from t'~ with
an exponent between —,

' and —,'. I do not know if the
zero-temperature result 3 would hold for finite tempera-
tures or if there are long transients.

To summarize I note that the thermal fluctuations will
likely influence the best path inside its family. The fami-
ly size and the number of the families grows as t '~ and
t ~, respectively. If the random disorders undergo slow
drifts, to a new random environment slightly diferent
from the old one, the best path has resistance to a jump
since its family members or close relatives are unlikely to
compete with it (family protection), or otherwise a com-
pletely diff'erent rival family which is normally far away
wins, and thus a long jump of the best path occurs. On
average, the jump distance scales against t with an ex-
ponent close to 0.83, and the energy advantage of the
winning path with respect to the old best path scales with
an exponent close to —,

' .
The directed-polymer problem was shown to be

equivalent to the Eden growing-surface problem. The
results of this Letter have direct consequences on the
surface growth processes: Suppose that there are two
surfaces growing simultaneously; the stochastical noises
for the two surfaces are synchronized everywhere and at
any time. Let us introduce small distortions in the syn-
chronization (the communications are imperfect); after a
long time we shall have two similar but diff'erent sur-
faces. If one asks how the relative distance between the
highest peak in surface 1 and the highest peak in surface
2 scales against time, the above exponent will account
for that. The exponent —,

' for the excited states governs
the expansion of the spatial coherence region.

Another possible consequence of this study regards
noise amplification in random systems. The directed-
polymer problem in 2D is equivalent to the domain-wall
problem of a random-bond Ising model. If the random
bonds undergo small and slow drifts, the domain wall
can change its position drastically. I expect that there
will be large observable noises in measurements, e.g. ,
electrical conductivities, magnetization s, and optical
properties. Thus it is seen that these small and slow
noises in the random backgrounds act as modulation
forces and they are capable of inducing large observable
noises. This may be especially true at the low-frequency
ends; some recent studies attribute the 1 /f noises of ran-
dom systems to slow random disorder modulations.

I expect that in more general random systems the
question raised in this work can also be asked. Immedi-
ate extensions should be readily carried out for domain
walls and directed polymers in higher dimensions,
random-field domain structures, and spin-glasses. From
the example analyzed in this work, we learn that, in
general, instabilities caused by perturbations of the
quenched random disorders and by thermal fluctuations
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(e.g. , by global changes of the temperature) are quite
diferent. The position of the domain wall can be very
diAerent under a new set of random disorders. Careful
analysis of this sort for the above-mentioned extensions
and other optimizational problems would deepen our un-

derstanding of random systems.
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