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We present evidence that the ground state of the frustrated Heisenberg antiferromagnet in two dimen-
sions is well described by a fractional quantum Hall wave function for bosons. This is compatible with

1

the resonating-valence-bond concept of Anderson in being a liquid with neutral spin- 3 excitations. Our
results suggest strongly that the resonating-valence-bond and fractional quantum Hall states are the
same thing. We also argue that the excitation spectrum has an energy gap.

PACS numbers: 75.10.Jm

It was recently pointed out to us by Lee and Joanno-
poulos' that the physics of the fractional quantum Hall
effect is very similar to that originally hypothesized by
Anderson? to be operating in the two-dimensional
Heisenberg antiferromagnet on a triangular lattice. In
both cases, the ground state is understood to be a nonde-
generate quantum liquid®~* with an energy gap. The ex-
istence of an energy gap is presently controversial. An-
derson et al.® have recently claimed that the gap is zero,
contrary to Anderson’s original hypothesis, while Kivel-
son, Rokhsar, and Sethna® have argued that a gap exists.
In this Letter we show that the fractional quantum Hall
(FQH) state at m =2 confined to a triangular lattice has
the same variational energy as the Anderson resonating
valence-bond (RVB) wave function to within 2%. We
see this as strong evidence that the ground state and ex-
citation spectrum, in particular the energy gap, survive
under adiabatic evolution of the FQH Hamiltonian into
that of the antiferromagnet. If this is the case, it neces-
sarily implies that the ground state is a nondegenerate
singlet, and that the elementary excitations are spin-+
fermions with long-range interactions. The occurrence
of FQH-type behavior in a system such as this is impor-
tant because it shows that a magnetic field is not essen-
tial to the physics. It is also an indication that such be-
havior may be ubiquitous in nature.

We consider the antiferromagnetic Heisenberg Hamil-
tonian

WAF=JZS,"SJ, (1)
(ij)

where J > 0, the (unrestricted) sum is over all pairs of
near-neighbor sites of the 2D triangular lattice, and
S;= 4 ho; is the spin operator at jth site. Following
Lee and Joannopoulos, we now show that this Hamil-
tonian is equivalent to the FQH Hamiltonian for bosons

on a lattice.
The first step in this procedure is the Holstein-

Primakoff transformation’: One interprets the spin
problem as a lattice gas by imagining an “atom” to be
present on every site with an up spin. The atoms are
then bosons with creation operators a;' =h ~'(Sy+iS}).
Written in terms of these, (1) becomes

H=T+V, (2a)
where
T=1%17Y (aai+a/a)), (2b)
(i
and
V=J(Z{)afa,»*a;a,« + 3JIN,—6J Y a}la;, (2¢)
ij i

where Ny is the number of spins or lattice sites. The bo-
son kinetic energy operator 7 comes from the spin-
exchange or XY part of the Heisenberg interaction. The
potential energy, which is a near-neighbor repulsion of
bosons, comes from the Ising part. This Hamiltonian
also contains a de facto hard-core repulsion of the form
Ny
Vo=Ux Y. a'aaa;, (2d)
i=1
with Ue—> oo, due to the fact that configurations with
more than one boson on a site do not exist. The
Holstein-Primakoff transformation is completed by alter-
ing the Hamiltonian in the manner

H— FH+V,,

and treating the lattice particles as ordinary bosons.

The second step is the identification in the Hamiltoni-
an of a fictitious magnetic field. The kinetic energy 7, as
given by (2b), does not have the right free-particle form
because the hopping matrix elements J;; =J are positive.
This makes the boson energy bands disperse down as one
moves away from the center of the Brillouin zone. To
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remedy this problem, we consider J;; to be matrix ele-
ments of the right sign, namely negative, in the presence
of a fictitious vector potential. To make contact with the
FQH problem, we change the signs of the kinetic energy
couplings to produce the pattern shown in Fig. 1, where
solid line segments are positive (wrong) bonds and
dashed lines are negative (right) bonds. This is a gauge
transformation and has no effect on the physics. In the
original gauge all lines would have been solid. We now
observe that one obtains just such a bond configuration
by assigning an arbitrary charge e* to the bosons and
then coupling them to a fictitious vector potential

=3 B(x§ —y%), (3)

with a particular value for B. This coupling introduces
phases into the hopping matrix elements J;; in (2b) ac-
cording to

- i
Jy— Ty = —Jexp{%j; A-ds}, @)

where ¢p=Ahc/e* is the quantum of flux associated with
bosons of charge e*. If we fix the magnitude of the ficti-
tious B field in (3) by

V3ad =4nlé, (5)

where ay is the lattice constant and lo=(e*B/hc) ~'?is
the magnetic length, then all phase factors in (4) are
real, and we get the bond configuration of Fig. 1. This
choice of B corresponds to one fictitious flux quantum
per spin of the original problem.

Except for the presence of the lattice, this system is
just a bosonic analog of the two-dimensional electron gas
with short-range interactions in a real magnetic field. In
light of our experience with the FQH effect, we expect
this system either to crystallize or to form a nondegen-
erate quantum liquid. The former cannot be ruled out
categorically, but we feel it is unlikely for the same
reasons Anderson did.? If it is a liquid, it should be de-
scribed approximately by the m =2 FQH wave function?®

FIG. 1. Distribution of signs of the couplings J;;= *J
defined by (3)-(5). Positive (negative) bonds are shown as
solid (dashed) line segments. Open circle denotes the origin.
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for NV, bosons:

Wgs(zls e ’ZNb)

—_1 M
=j1:Ik(Zj_Zk)ZCXp{Té[§1 lZ['z}. (6)
where z;=x;+iy; is the complex lattice coordinate of
the jth particle. g describes a state of density p,
=4nr/§, which corresponds to + boson per unit cell. In
other words, the number of up spins is equal to the num-
ber of down spins. We must emphasize that the only
reason for considering such a wave function is the physi-
cal precedent of its success in describing the FQH states.

We have evaluated the energy of the system in the
ground state (6) by a semiclassical Monte Carlo meth-
od.* For a half-filled lattice, the equivalent lattice-gas
Hamiltonian is

H=T+V, (7a)
where the kinetic and potential terms are
f=% Zj,ﬂj(a;a,‘+a,-*aj), (7b)
Cij)
1 =JZafa,-*a,-aj —1.5JN;. (7¢)

(ij)
We work in the cylindrical gauge (3), and so the hopping
matrix elements jij are as shown in Fig. 1. In Fig. 2 we
have plotted the kinetic and potential terms in the
ground-state energy E g5 ={yys | # | wes)/yys | wgs) for lat-
tices of different sizes. Since the wave function g keeps
the particles localized within a circular region of area
p2Np, we use free boundary conditions. The potential
energy Vs contains a negative surface term which scales
like (NV,) ~'2 since the bosons on the boundary have
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FIG. 2. Energy of the variational ground state (6), in units
of N,J, as a function of system size. 2N, =N, is the number of
lattice sites. Kinetic energy (XY model), lozenges; potential
energy (Ising term), circles.
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fewer near neighbors than in the bulk. Our results for
the kinetic (XY) and total (Heisenberg) ground-state
energies are fgs= —0.62+£0.01 and Ez =—0.94
+0.02, in units of JV;. These values are =10% higher
than extrapolated finite-lattice results of Oguchi, Nishi-
mori, and Taguchi® who get Ty = —0.74, E,= —1.05,
in the same units. The potential (Ising) contribution to
the energy, 1735= —0.32JN; agrees very well with finite-
lattice calculations. The agreement is surprisingly good,
in view of the fact that our trial wave function ;s in-
volves no free parameters.

For the resonating-valence-bond (RVB) state, Ander-
son? estimated Egyg= —0.98 by extrapolation from lat-
tices with 4, 8, 12, and 16 sites, while Oguchi, Nishimori,
and Taguchi, working with lattices of up to 20 sites, ob-
tain Egvg=—0.95*0.02, in units of JN,. It thus ap-
pears that the RVB and fractional quantum Hall wave
functions are equivalent variationally.

We check the accuracy of the Monte Carlo calcula-
tions by computing the radial distribution function and
the potential energy of the ground state (6) using the
hypernetted chain (HNC) procedure. The HNC result
for the ground-state potential energy is VgNC
= —0.30J/V, in excellent agreement with the extrapo-
lated Monte Carlo value shown in Fig. 2.

These numerical results strongly support the idea that
the RVB and FQH states are in the following sense
physically identical: One can imagine adiabatically
transforming the FQH problem into the antiferromagnet
problem. This might be accomplished, for example, by
expressing the Hamiltonian in terms of the single-boson
basis orbitals

0.(z) =(1/2m) Vexpl— + |z | 2= L | zo| 2+ $ 2221,
(8)

where z, is a lattice site, and then letting the off-diagonal
matrix elements of the overlap matrix S,g, given by

Sap=f 02 op(2)a?z, ©)

go to zero. On the basis of our experience with the FQH
problem for fermions, we can say with some certainty
that the adiabatic evolution starts from a system with a
nondegenerate ground state described approximately by
Eq. (6), an energy gap, and elementary excitations of
“charge” §. Charge in this case means excess spin. If,
during the evolution, the gap remains intact, which is not
clear, the nondegeneracy of the ground state and frac-
tional nature of the excitations almost certainly remain
intact as well. If the gap collapses during the evolution,
on the other hand, the situation is less certain. The exci-
tation spectrum could conceivably survive. A more likely
outcome, in our opinion, is that antiferromagnetic order
would set in.® For this reason we believe that the RVB
state possesses an energy gap, and that the assertion of
Anderson et al.® that the state is gapless is incorrect.

Our picture of the elementary excitation spectrum is in
fact almost identical to that proposed by Kivelson, Rokh-
sar, and Sethna.®
We have obtained a numerical estimate of the gap A
using the FQH quasihole wave function?
Ny

voo=I1(Gi—2z0) T1(z; —2)?
>k

i=1

4[(% n=1

1%
Xexp{—— D |z,,|2}, (10)

where z¢ is a complex number locating the quasihole
center. Since the real excitation is necessarily an eigen-
state of linear momentum, this estimate is for the center
of mass of the quasiparticle band. It is a good estimate
for the gap only if the band disperses very little, which
we believe to be the case. Calculations of this dispersion
are under way and will be reported in a later publication.

We find that A is minimized when zg is on a lattice
site. The potential energy contribution to A is calculated
using the generalized HNC algorithm,* which is insensi-
tive to boundary effects. The value we find is
AV =0.21J, independent of N;. The kinetic energy cost
AT to create a quasihole is estimated as the difference in
kinetic energy between states (6) and (10). Figure 3
shows the results of Monte Carlo calculations of AT for
lattices of up to 400 sites. Extrapolation to the thermo-
dynamic limit N;— oo yields AT=—0.04£0.10 in
units of J. The total energy required to create a local-
ized spin-3 excitation is thus finite and equal to
A=(0.17£0.10) J.

Several remarks are in order. We believe that the true
ground state is a nondegenerate singlet even though it is
not evident that this is the case for the wave function of
Eq. (6). We note particularly that the true ground state
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FIG. 3. Kinetic energy cost AT to create a quasihole excita-
tion, as a function of system size. The HNC result for AV is
0.21J.
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must be real, while the wave function (6) is not, at least
for some configurations. This does not mean that the
time-reversal symmetry of the Hamiltonian is spontane-
ously broken. In fact, the correlation functions we have
so far been able to calculate for the variational wave
function (6) are real in the thermodynamic limit. We
also have some preliminary evidence that the ground-
state Ansatz (6) is a spin singlet. The identification of
the state (6) with the true ground state of the frustrated
antiferromagnet is, therefore, physically meaningful.
Adopting this picture of the ground state as a quan-
tum spin liquid with an energy gap, we conclude that its
elementary excitations are neutral spin- + objects. Their
spin is the charge of the elementary excitations of the
equivalent FQH state, which, for a half-filled Landau
level, is equal to = +. The fractional charge quantiza-
tion is exact given the uniqueness of the ground state and
the existence of a gap. The underlying rotational sym-
metry of the Heisenberg Hamiltonian also guarantees
that the quasiparticle and quasihole, which are equiv-
alent to the spin-up and spin-down states of the same ex-
citation, are degenerate. Like the elementary excitations
of the FQH system, these excitations may be thought of
either as fermions or as particles obeying fractional
statistics.*!% The former approach leads to an intriguing
situation where the quasiparticles interact via long-range
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forces while all interactions in the original Hamiltonian
are short-ranged.
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