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Some Consequences of an Equation of Motion for Diffuse Growth
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An equation of motion is derived for the surface harmonic measure and the surface Green's function
in a class of diffusive growth processes, including diAusion-limited aggregation as a special case. These
equations, in conjunction with a scaling hypothesis, imply a relation between the "multifractal" spec-
trum of exponents and the mass scaling of the clusters generated by these processes. Under some cir-
cumstances, this relation is inconsistent with a scaling law proposed by Turkevich and Scher.
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In many physical circumstances, the growth of struc-
tures is limited by diffusive effects. Examples include
colloidal aggregation, electrodeposition, and, in some
respects, solidification from a melt. ' Although the
essential physics underlying these phenomena was ex-
posed by Witten and Sander in 1981, the intervening
years have seen little analytical progress in a field that
has been dominated by extensive and sophisticated nu-
merical studies. This Letter seeks to redress this bal-
ance slightly, by pointing out that certain powerful ex-
ponent relations can be generated by a quite simple
analytical approach to this subject.

The Witten-Sander model may be easily described in a
continuum, electrostatic language. The discussion will

always be restricted to two dimensions. Consider a clus-
ter of n particles whose surface is parametrized by s, so
that the surface position is given by x(s). The cluster is
made up of particles of size a; thus the surface is smooth
on length scales smaller than a. The length of surface
dw in an interval ds is given by (dw/ds)ds. In the space
exterior to the cluster, the electric potential &(x)
satisfies V 4&(x) =0, with C&(x) = V =1 on some distant
outer surface, which acts as the source of particles. The
local normal electric field at x(s) is P(s) =tl-N(x(s));
this quantity is sometimes referred to as the (unnormal-
ized) "harmonic measure" of the surface.

In the Witten-Sander model, the probability G(s)ds
of the (n+ 1)st particle attaching to the cluster in the in-
terval ds is

P(s) (dw/ds)ds
fds(dw/ds)P(s)

This model has been generalized by Niemeyer, Pietro-
nero, and Wiesmann to account for the patterns formed
in the dielectric breakdown of insulating media. In this
model, G (s ) is given by

P "(s) (dw/ds )ds (2)
fds(dw/ds)P"(s)

'

which defines a different model for every value of g, and
reduces to the Witten-Sander model if g=1. One gen-
erally takes g) 0.

In all of these models, the radius of r of the clusters
generated in an isotropic experiment depends as a non-
trivial power upon the number of particles, n —r . '

For g =1, the mass scaling exponent D is approximately
D = 1.71, and D 2 as g 0. It appears that D de-
creases with increasing g. D cannot be less than 1 for
any g; it is not known if there is a critical g, such that
for g) TI„D=1.

The phenomenology of the local electric field P(s)
about a cluster is now rather well understood. The most
notable property of P(s) is that different moments of
P(s) scale with independent "multifractal" expo-
nents. ' Writing the normalized electric field, or har-
monic measure, p(s) =P(s)/fds(dw/ds)P(s), one has
that

' r(q)
dw ads p'(s)—
ds r (3)

The general properties of r(q) are reviewed in several
places. Here it is only relevant that r(q) is a nontrivial
monotonically increasing function of q, and that
(1) 0 11,12

P(s) is a Green's function relating the voltage V on
the distant surface to the normal electric field at x(s),
given that the cluster surface is at zero potential. It is
productive to consider also the Green's function between
two different points of the surface, H(s, s')(dw'/ds')ds'.
H(s, s')(dw'/ds')ds' is defined as the normal electric
field at x(s) if there is a unit potential in the interval ds'
on the surface, and the potential on all other parts of the
boundary (including V, the potential on the distant
boundary) is zero.

The Green's function H(s, s') also plays an important
role in the theory of the double-layer impedance between
an electrolyte and a metallic surface. ' It can be shown
that H(s, s') is a symmetric function of s,s'. In two di-
mensions, H(s, s') has a particularly simple representa-
tion involving the conformal map between the surface
x(s) and a straight line. '

If all surfaces are at the same potential, then the elec-
tric field will be everywhere zero. Thus, since the fields
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superpose linearly,

, dwP(s)+ ds' H(s, s') =0.
ds'

(4)

in f(s), this implies that 6&(x(s)) = —P(s)f(s). Thus
the electric field normal to the old surface arising from
6&(x) is [recalling the definition of H(s, s')]

8;8(I)(x (s ) ) = —

„wads

', H (s,s ')P (s ')f(s ').
ds

Given a surface x(s) and its corresponding P(s),
H(s, s'), it is not difficult to calculate the changes in

P(s), H(s, s ) if the surface is changed infinitesimally.
The new surface will be given by x(s)+6x(s), and the
parametrization of the new surface will be fixed by the
requirement that 6x(s) be everywhere normal to the old
surface, so that Bx(s) =f(s)n(s), where n(s) is the unit
normal to the surface at s.

It is convenient to calculate first the changes in
the purely geometrical quantities dw/ds and 0(s )
=cos '[fi(s) z], the angle between the surface normal
and a fixed direction z. It is simple to show that'

(6)

Corrections due to the fact that the normal derivative
should be evaluated on the new and not the old surface
are higher order in f(s).

In the foregoing, the O(f) change in P(s) due to the
O(f) change in @ has been calculated. There is also an

O(f) change in P(s) due to a change in the position at
which the gradient of @ is evaluated. The parametriza-
tion of the new surface is related to the old by the re-
quirement that lines of constant c be everywhere normal
to the surface; also, electric field lines are normal to the
surface. Thus the variation in 8;(I) due to the change in

the position of the surface can be related to the local
stretching of the surface, as the flux piercing a line be-
tween x(s) and x(s+ds) will not change with the move-

a brief calculation,

8(dw/ds ) = [d8(s)/ds] f(s),

6(9(s ) ) = (dw/ds ) ' [df (s )/ds].

(Sa)

(sb)

8(8;e(x)) = —P (s ) (dw/ds) '8(dw/ds ), (7)

To find the change in P(s), let us return to &(x), the ment of the surface. It follows, after

potential exterior to the cluster given that the potential
on the old surface &(x(s)) =0 and the potential on the
distant surface is N = V =1. Write @'(x)=&(x)
+8&(x) as the potential given that the potential on the
new surface is zero, @'(x(s)+Sx(s))=0. To first order where 8(dw/ds) is given by Eq. (5a).

Thus, we obtain finally that'

SP (s ) = — ds ' H (s, s ')P (s ')f(s ') —P(s )ds' ds
dw

ds

A similar calculation may be performed for BH(s, s'), with use of &I)D(x;s ')ds', the potential in all space given a unit
potential in ds' and a zero potential on all other surfaces. The result is

6H(s, s') = —„ds „H(s,s")H(s",s')f(s ) —H(s, s')
ds ds

dw

ds

Note that with use of Eq. (4), Eq. (8) can be obtained from Eq. (9).
Equation (8) can be used to study the behavior of the moments of the electric field in the growth models discussed

above. Suppose that one has a particular cluster, and that f, (s') is the change in the shape of the cluster caused by
the addition of a particle at s". Clearly f, (s') will be localized to within a distance a about s". The change in the
average of the qth moment of the electric field will be

6 ds P/(s) = ds P~ '(s) —
q ds', H(s, s')P(s')f, (s') —(q —1)J dsb P&(s).dw dw

&
",dw. . . " dw

ds ds " ds' ds
(10)

In the q models discussed above, the probability of a particle landing at a position s is given by Eq. (1). Let us
represent averaging over the different probabilities of clusters appearing by brackets ()„,where the subscript represents
the number of particles in the cluster. Then it follows directly from Eqs. (1), (Sa), and (10) and the short-range nature
of f, (s ') that

d dw Jds(dw/ds) Jd (d s/d
'ws)P(ss)H(s, s')P" '(s')

)dn " ds fds (dw/ds )P"(s )

—(q —1) fds (do/ds )P~+"

fds (dw/ds )P"(s )
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This reduces to a particularly simple form if q =1. Re-
calling Eq. (4) and the symmetry of H(s, s'), we obtain

ds P s

fds(dN/ds)P" '(s)
)fds (dw/ds )P"(s )

(12)

This equation is the central result of this study. The
reader will note that the only significant approximation
that has been made thus far, aside from a certain laxness
about the precise definition of f, -(s ), is the assumption
that the continuum growth equations (Sa) and (5b) may
be applied to an aggregate. ' Even this assumption does
not contribute directly to Eq. (12).

To proceed further, it is necessary to make more prob-
lematical assumptions. The first assumption is that
(fds(dw/ds)P~(s)) can be written in a scaling form in-
volving the three characteristic length scales a, r, the size
of the cluster, and R, the distance to the outer surface,

J"ds Pq(s ) =a ' '/fq —
gqds r ' R

with the further requirement that f~(a/r) have the mul-
tifractal form fv(a/r) —(q/r) ' ~ . In two dimensions,
one expects gq(r/R) to have a logarithmic form, as the
total Aux absorbed by a cluster depends logarithmically
upon r/R.

The final assumption is that the expectation value of
the ratio on the right-hand side of Eq. (12) can be ap-
proximated by the ratio of the expectation values of the
two moments. Physically, this corresponds to the as-
sumption that the z(q) do not vary widely between
diff'erent realizations of the aggregates. Of course, such
an assumption can only be justified a posteriori, or by a
direct numerical study of the issue.

With these assumptions we have from Eq. (12) that
(@+2)— (g)

D = z(q+2) —z(g) (14)

Because this relation was derived from the growth equa-
tions, perturbations (such as weak lattice eA'ects) that
only slightly change the growth equations should not
aff'ect the validity of this exponent relation, as long as the
scaling and factorization assumptions still hold. Note
that a deterministic growth process in which f(s)
~ [P(s)]j"will also lead to Eq. (14). This equation does
not make an exact prediction for any model; it is rather a
consistency relation that might, a priori, apply to any
"fixed point" of a diAusive growth process. For instance,
a smoothly growing Aat surface, an unstable solution of
the growth equations for any q, satisfies Eq. (14). In
this case, z(q) =q —1, and z(ri+2) —z(g) =D =2, the
value for a compact cluster. For ofI-lattice diff'usion-
limited aggregation (rI= I), z(3) —z(1) =z(3) was re-

ported by Halsey, Meakin, and Procaccia to have the
value z(3) =1.712 ~0.01, in good agreement with the
generally accepted D = 1.71. On a square lattice with

q = 1, it seems that as n e(), D 1.5, and z(q )
=min( —,

'
q, q

—1) for q ) 1. ' Thus z(3) = —,
' =D also

in this case. '

Equation (14) has interesting implications in the limit

g (x). In general, as q ee, z(q) aq, where a is the
scaling exponent of the strongest local singularity in the
IIux P(s) reaching the structure. s'' Thus, as rI

D 2a, which is consistent with the expectation that as
g ~, D l, and a —,'. For any g we have D» 2a.

Turkevich and Scher have proposed a scaling relation
linking D to this local singularity exponent a. ' For gen-
eral tI, this relation is D =2+ rI(a —1). Comparing this
to the bound D» 2a, I conclude that for g» 2 these two
relations, taken together, are inconsistent with the ex-
istence of self-similar clusters with nontrivial z(q). As
such structures are apparently observed in numerical
simulations, at least for q =2 and g =3, one of the two
exponent relations quoted above must be wrong for
g» 2. ' This suggests some promising directions for
incisive numerical study.

The extension of these ideas to higher dimensionalities
is straightforward, and will be addressed in a separate
communication.
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