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Integrable Ponderomotive System: Cavitons are Solitons
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A new set of integrable soliton equations describe caviton formation in a plasma. The equations are
solvable by the inverse scattering transform. The time evolution of the scattering data is obtained and it
is found that, unlike other integrable equations where the magnitude of the reflection coe%cient was al-
ways a constant of the motion, here it may grow and/or decay in time. One physical manifestation of the
growth of the reflection coefticient is the growth of density ripples in front of a microwave source. On
the other hand, when the decay conditions dominate, one is left with only cavitons, which are the solitons
for these equations.

PACS numbers: 52.35.Mw, 02.90.+p, 03.40.Kf, 52.35.Sb

I have discovered a new integrable system describing
"caviton" formation. ' Cavitons are important in the
study of long-wavelength Langmuir turbulence. ' Most
studies are based on the Zakharov equations which de-
scribe the interactions of ion-acoustic density waves with
electron (Langmuir) plasma waves. Langmuir waves os-
cillating at a frequency just above the electron plasma
frequency become modulationally unstable and collapse
into a region of strong localized electrostatic electric
fields, accompanied by a density depression (whence the
name cavitons).

The Zakharov equations are considered to be nonin-
tegrable, except in two limits: the nonlinear Schrodinger
equation and the Yajima-Oikawa equations. ' Howev-
er, several other limits possess solitary waves'' ' and
some of these solitary waves may well be solitons.

I shall here discuss a generalization of the Karpman
equations [Eqs. (28) and (29) of Ref. I lj. This general-
ization is

d E+(a —q)E=O,

cl,q+ t)„~t da E*E(a,x, r) =O. (2)

In the above, E(a, x, r) is an rf electric field, a is the
(scaled) frequency above the plasma frequency, and q is
the fractional change in the plasma density. The integral
over a in (2) represents the cumulative ponderomotive
effect due to a spectrum of incoherent and/or turbulent
sources. In the case of a 6-function spectrum, we would
recover the Karpman equations. These equations are in
the comoving frame of the right-going ion-acoustic wave
and describe how the profile q will evolve in this frame.

The general solution of the Zakharov equations will
contain both right- and left-going ion-acoustic waves. It
will also contain some important interactions between
these counterpropagating waves. Here, in this model, I
only consider what is intuitively the dominant interaction
on a unidirectional propagating ion-acoustic wave. This
is done by coordinate transformation to the comoving

frame of the ion-acoustic wave and averaging over a
slow-time scale, ignoring the possible presence of the
counterpropagating wave. However, the effects of the rf
wave on the unidirectional ion-acoustic wave are ac-
counted for. Thus, these equations are a model of only a
sector of the Zakharov equations, and cannot therefore
be expected to describe the solution of the full equations.
However, this model does describe the evolution of a part
of the solution of the Zakharov equations, namely, the
evolution of an ion-acoustic disturbance into either a set
of cavitons or a region of intensified oscillations.

I wish to emphasize that a large degree of incoherence
and random phases does exist in this model. Neither the
phase diff'erence between the electric fields at difIerent
values of a nor the overall phase at each value of a are of
consequence. Only the magnitude, which models the in-
sensitivity of the ponderomotive force to any phase, is
important.

This phase incoherence is not without its conse-
quences. It can cause the continuous spectrum (corre-
sponding to the linear modes) either to be exponentially
damped or to undergo exponential growth with time, or
both. Both can be present simultaneously (but in
different regions of k space) depending on the distribu-
tion of the sources which drive this system. It is only in
the case of exponential decay that one could expect the
solitons to form and make their presence known as cavi-
tons. In this system, a soliton is the same as a caviton,
and thus cavitons are solitons.

Note the similarity of the above phenomena to that of
"self-induced transparency. " ' ' There, one also has an
exponential decay of the continuous spectrum and a
phase incoherence arising from independent oscillators
(in this case, independent atoms).

A detailed derivation of (I) and (2) shall be given
elsewhere, ' wherein the scalings of the various physical
quantities shall be considered. Here, let me simply say
that a basic derivation is given in Ref. 11, without the in-
tegral over a. This integral is then obtained by consider-
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a„'i (k, x, .)+ tk' q(x, .)]i (k,—x,.) =O. (3)

Let p(k, x, r) and y(k, x, r) be two Jost functions

2
d'8 —88 q

—2qrl„8+2k d, B=r) I E*Eda

ing the rf field to be due to an incoherent collection of
sources, or even just a single source, but with a finite
bandwidth. The important point is that the cross terms
in the ponderomotive term must average to zero because
of some incoherent processes. Then Eq. (2) applies.

The parameter regime where (I) and (2) do apply is
when the ponderomotive term is just able to overpower
the usual ion-acoustic dispersion and nonlinear terms,
but not so large that one is forced into the Yajima-
Oikawa regime' where the slow-time derivative of the rf
electric field would become important in Eq. (I).

One physical situation that these equations would
model is the following: Consider an infinite homogene-
ous neutral plasma. Let there be initially imposed on the
plasma density an arbitrary, but small, localized ion-
acoustic wave. In the spirit of weakly nonlinear pertur-
bation theory, I then use the linear theory to decompose
the initial disturbance into a right-going and a left-going
wave. I now treat these waves separately. Also let there
be electromagnetic rf fields present with the sources of
these rf fields possibly located both to the right and to
the left of, but outside of, the region of the initial ion-
acoustic wave. I assume the frequencies of these rf
sources to be near or just above the plasma frequency of
the initially infinite plasma, and that these several
sources are incoherent. These sources need not be only
external sources, but could be effective internal sources
(i.e., other parametric processes in the plasma which
generate rf waves, but are removed from the location of
the ion-acoustic wave).

The method of solution of Eqs. (1) and (2) is by the
inverse scattering transform. ' First I shall briefly de-
scribe the Jost functions and the scattering data for Eq.
(I) in my notation, which follows that of Kaup and co-
workers' ' '

which satisfy the Schrodinger eigenvalue problem (3)
with q(x) satisfying the Faddeev conditions. ~o The
boundary conditions on these Jost functions are

e '' asx
lkX + ~

(4a)

(4b)

As x +~, the coefficients of the exponential terms
are called the "scattering coefficients" and are found
from

ae ' "+be'" as x +~,
aeIkx be

—&kx

(sa)

(sb)

(7)

where the bar indicates that k is to be replaced by —k.
Thus b(k) =b( —k), i'(k, x) =i'( —k, x), etc. The
scattering coefficients satisfy aa —bb =1 and the Jost
functions can be interrelated as p=ai7i+by, whose in-
verse is iil =a& —bp The reflec. tion coefficient for a wave
incident from +~ is R+ =b/a and the transmission
coefficient is T = I/a.

The bound-state eigenvalues are the zeros of a, which
are the poles of T, for k in the upper-half complex k
plane. Thus, a(k =ix„)=0 (n =1,2, . . . , N), where
~„)0 and N is the total number of bound states, as-
sumed to be finite.

The scattering data for the Schrodinger eigenvalue
problem (3) may be chosen to be the set

S+ =JR+(k), k =real; [K„,p„]„=iI,
where p„are the "normalization coefficients. " ' From
5+, one may reconstruct q.

In order to determine the time evolution of the scatter-
ing data, one requires a "Lax pair. " The first equation
of this Lax pair of equations is the eigenvalue problem
(3). The purpose of the second equation of the pair is to
define the general time evolution of the general solution
of (3). This may be taken to be v =Av+Btl v, where
2 =Aii(k, r) —

—, r1,8 and 8 is to satisfy

Equation (7) is obtained by applying the integrability condition 6,(tl„v) =tl (|l,v). The solution to (7) is

1 " da8 =— E*E(a,x, r), (8)

which may be verified by substitution and use of (1).
I shall briefly outline how one determines the time dependence of the scattering data. The integral in (8) is singular,

and so it is necessary to choose a contour. It is best to choose it by replacing k by k+i0+. Then one must define the
asymptotics of E for x + ~. For a source of a scaled frequency of a at +~, the solution would be
E+ =S+(a)~ii(a, x, r)/a(a, r), where S+(a) is the strength of the source. Similarly, for a source at —~, we have
E =S—(a) y(a, x, r)/a(a, r) If we ta.ke these two sources to be phase incoherent, then (8) becomes

I $ da
)

— + ]1=
4 J (

. +)2 p @+00 ii —WW

where p ~ (a) are the densities of the sources and I have used y* = y, p* =p which is valid for real q and when a is also
real, as in the above integral.
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Now one can determine the constant Ao which depends on our choice of v. Letting v be p and requiring 6,(l)~ 0 as
x —~ gives

i da p+ bb

(k+ iO+ ) —a aa aa,
(io)

As x + ~, p goes over into a linear combination of a and b, allowing us to obtain the time dependence of a and b
Thus,

i da bb
(),a= —ka„, , (p ——p+) (a, r),k+i0+ —a aa

i da
(),b = kb J— (p +p )(a, r) —nbp (k, r),

2 —- (k+iO+)2 —a' (i2)

M(k, r) = [I +r(k, r) ' /[1+I (k, O)] '

I (k, r) =I (k, O)e " '=bb,

g«) =~[p+«) —p-«)],
(k) = —,

' kPJ", , [p ( )+p —( )],

(i4)

(is)

k " da8.(k, r) =—PJ
' lnM(a, r),

k —a

and P indicates the Cauchy principal-value integral.
Note the exponential time dependence in (13). When
the sources on the right- and on the left-hand sides are
unbalanced, g(k) is nonzero, and the magnitude of b(k)
will change in time. An excess of sources on the left

when k is real. When k is in the upper-half complex k
plane, and oA the real axis, then the last term in (12) is
absent.

From the above, we may determine the time depen-
dence of the reflection coefticient, R+. One obtains

—()/2)g(k)r
( ( )1R (k, r) =R (k, O) e ' ', (13)

M k, r

where for k real

For the normalization coe%cients, p„, we delete the last
term in (12), and obtain

p„(r) =p„(0)e'"", (20)

where

!
causes growth in b(k) while an excess on the right
causes decay. The determining factor is whether the rf
wave is flowing with or against the ion-acoustic wave.
We are in the frame of the ion-acoustic wave which is
flowing to the right. If the rf source is on the left, then it
is behind the ion-acoustic wave and the rf wave is flow-

ing with the ion-acoustic wave. In this case, b(k) grows
and energy is being pumped into the ion-acoustic wave.
But, if the rf source is on the right, then it is in front of
the ion-acoustic wave and the rf wave is flowing against
the ion-acoustic wave. Now the ion-acoustic wave is los-
ing energy and b(k) decreases.

For the bound states, we first observe that by (11), at
a zero of a(k, r) for k in the upper-half k plane, B,a =0.
Thus, zeros of a do not move and are stationary. Conse-
quently,

(1,)c„=O (n = I, 2, . . . , N )

((„(r)=K„2r[p+(a)+p (a)] ——lnM(a, r) i,
a +x. 7L'

n

(2i)

for n =1,2, 3, . . . , N.
The general evolution for the solution of (1) and (2)

can be quite complicated, consisting of an arbitrary as-
sortment of growths and decays in various regions of k
space, depending on the distribution of the sources.
Here I shall discuss a couple of simple cases.

First, I note the inverse scattering equations for this
eigenvalue problem. ' Define

F(x, r)

dk R+ (k, r)e'""+g p„(r)e2m" —-
n

(22)

then solve the following linear integral equation for

K(x,y)+F(x+y)+& K(x,s)F(s+y)ds =0; (23)
X

then the potential, q, is recovered from

q = —2 dK (x,x )/dx. (24)

The typical solutions for q consist of two characteristic
parts: radiation (the continuous spectrum) and solitons
(the bound-state spectrum). ' ' In general, the radia-
tion behavior is similar to the linear solution while the
solitons are distinctly diA'erent and are nonlinear enti-
ties. ' ' First, let us consider the case where p+(k)
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)p (k) which causes an absolute decay in the continu-
ous spectrum. This is analogous to the attenuator case
of self-induced transparency. ' '" For large r, R+(k)
will decay as e ', leaving only the soliton part of
the solution. This solution will, in general, consist of X
individual solitons, and if one waits long enough, they
will separate out according to their velocities. A typical
single soliton solution is

q = —2tc„'/cosh'[tc„(x —xo —t „r)l, (25)

where xo is some constant and

t „=—
J [p+(a)+ p (a)].1 f de

4 —- e'+~2n

Note that unlike the Korteweg-de Vries equation, the
largest solitons move the slowest. Each one of these soli-
tons is a density depression which contains within itself
an intensification of the electric field, F, which vanishes
exponentially away from the soliton, or caviton.

In the other canonical case, when p {k))p+{k), we
have absolute growth in the reflection coefficient. This
case corresponds to the amplifier case of self-induced
transparency. ' ' Now the radiation dominates the
solution and after a sufficiently long time, R+(k) I

provided that at that value of k, g(k) eO. And note that
the rate at which R+ I is governed by the value of
g (k ) and may well diff er considerably for difterent
values of k. Nevertheless, in this case, we eventually do
obtain perfect reflection after a sufticiently long time,
which means that the rf wave has piled up in front of it a
suSciently high barrier of ion-acoustic plasma waves
that it no longer can propagate into the plasma, and
must now be totally reflected.

The above considerations only apply for a right-going
acoustic wave. For left-going acoustic waves, the result
is the opposite. In a real plasma, one has right-going as
well as left-going acoustic waves. And in the absence of
any deliberate source of rf waves (such as a microwave
source at one end), the density of rf sources (such as
scatterings, etc. ) could be expected to be uniform
throughout the plasma, or perhaps just slightly toward

p+ & p due to Doppler shifts. Thus, one would not
necessarily expect to see these dramatic growths or de-
cays inside a typical plasma because of the left-right
symmetry. Ho~ever, if one places a micro~ave source at
an edge of the plasma, he has then set up the conditions
for growth in the ion-acoustic waves moving away from
the source. And that is what is observed. The pon-
derornotive eftect pushes the plasma away from the mi-
crowave source and the resulting structure does have the
oscillatory solution characteristic of the continuous spec-
trum of the Schrodinger eigenvalue problem.

The author wishes to acknowledge the kind hospitality
of P. Sabatier and Dr. Jerome Leon of the Laboratoire
de Physique Mathematique at the Universite de
Montpellier in France, where this work was carried out.

This research was also supported by the U.S. Air Force
Office of Scientific Research through Contract No. 86-
0277 and by the National Science Foundation through
Grant No. MCS-8202117.

' Permanent address: Clarkson University, Potsdam, NY
13676.

'G. J. Morales, Y. C. Lee, and R. B. White, Phys. Rev. Lett.
32, 457 (1974).

~E. J. Valeo and W. L. Kruer, Phys. Rev. Lett. 33, 750
(1974).

H. C. Kim, R. L. Stenzel, and A. Y. Wong, Phys. Rev. Lett.
33, 886 (1974).

4G. J. Morales and Y. C. Lee, Phys. Fluids 19, 690 (1984).
E. W. Laedke and K. H. Spatschek, Phys. Rev. Lett. 45,

993 (1980).
6M. V. Goldman, Rev. Mod. Phys. 56, 709 (1984).
7G. D. Doolen. D. F. DuBois, and Harvey A. Rose, Phys.

Rev. Lett. 54, 804 (1985).
~David Russel, D. F. DuBois, and Harvey A. Rose, Phys.

Rev. Lett. 56, 838 (1986).
9V. E. Zakharov, Zh. Eksp. Teor. Fiz. 62, 1745 (1972) [Sov.

Phys. )ETP 35, 908 (1972)].
' N. Yajima and M. Oikawa, Prog. Theor. Phys. 56, 1719

(1976).
''V. l. Karpman, Phys. Scr. 11, 263 (1975).
' E. W. Laedke and K. H. Spatschek, Phys. Fluids 23, 44

(1980).
' H. Kramer, E. W. Laedke, and K. H. Spatschek, Phys. Rev.

Lett. 52, 1226 (1984).
'4G. L. Lamb, Jr. , Rev. Mod. Phys. 43, 99 (1971), and Phys.

Rev. Lett. 31, 196 (1973), and Phys. Rev. A 9, 422 (1974)
'5M. J. Ablowitz, D. J. Kaup, and A. C. Newell, J. Math.

Phys. 15, 1852 (1974).
' D. J. Kaup, Phys. Rev. A 16, 704 (1977).
' D. J. Kaup, to be published.
' M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur,

Stud. Appl. Math. 53, 249 (1974).
D. J. Kaup and A. C. Newell, Proc. Roy. Soc. London, Ser.

A 361, 413 (1978).
L. D. Faddeev, Dokl. Akad. Nauk, SSSR 121, 63 (1958)

ISov. Phys. Dokl. 3, 747 (1958)].
' I. M. Gel'fand and B. M. Levitan, Amer. M ath. Soc.

Transl. (2) 1, 253 (1951).
C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M.

Miura, Phys. Rev. Lett. 27, 1095 (1967), and Commun. Pure
Appl. Math. 27, 97 (1974).

23S. V. ManakovZh. Eks,p. Teor. Fiz. 83, 68 (1982) lSov,
Phys. JETP 56, 37 (1982)].

~4Although we now have a boundary present, if we move into
the plasma a short distance and go into the comoving frame of
the inwardly going ion-acoustic wave, we would then observe
the boundary moving away from us. In this case, we are ap-
proximating the condition of an infinite plasma and observe the
rf wave to be propagating in the same direction as the inwardly
moving ion-acoustic wave.

25D. L. Eggleston, A. Y. Wong, and C. B. Darrow, Phys.
Fluids 25, 257 (1982).

M. J. Ablowitz and A. C. Newell, J. Math. Phys. 14, 1277
(1977).

2066


