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Turbulent Drag Reduction by Polymers: A Quantitative Theory
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By use of the recently proposed model of the dynamics of a macromolecule in transient extensional
flows, the eA'ective viscosity increase in turbulence due to unraveling macromolecules is calculated, and a
relation between this viscosity increase and a drag reduction parameter (the slope increment) is derived.
The predictions of the theory are in good agreement with experiment.

PACS numbers: 47.25.—c, 36.20.Ey, 47.50.+d

Turbulent drag reduction by polymer additives is the
most spectacular eftect at the interface of fluid dynamics
and high-polymer physics. The pressure loss in a flow

through a pipe, for example, may be reduced 3 to 4 times
when an extremely small amount of flexible high poly-
mer is added [concentration c=10 g/cm l. A small
but noticeable efTect has been registered' at concentra-
tions as low as 2x10 g/cm . The phenomenon has
important applications (e.g. , in oil pipelines, fire fighting,
hydrotransport of solids, etc. ) and has stimulated a vast
amount of research since its discovery about forty years
ago. In view of the extreme complexity of the physics in-

volved, it is not surprising that only tentative explana-
tions of the phenomenon exist.

Lumley explains the drag reduction as follows: The
turbulence outside the viscous sublayer at the wall may
stretch the polymer chains if the strain rates in the tur-
bulence are su%ciently large. This will lead to a higher
effective viscosity in this turbulent region, and conse-
quently to an increase in the thickness of the viscous sub-

layer, thus reducing the velocity gradient at the wall.
The viscosity in the viscous sublayer, however, remains
at the low level of the shear viscosity of the solution
(practically equal to the viscosity of the solvent) because
the polymer chains are not extended in the simple shear
flow of the viscous sublayer, where they rotate with vorti-
city and thus experience the stretching and compressing
efl'ects of the strain-rate field in an alternating fashion.
Thus the reduced velocity gradient at the wall means re-
duced shear stress at the wall r, and so the reduced
drag.

Lumley's hypothesis has not become a predictive
theory for two reasons: (a) no prescription exists for the
calculation of the viscosity increase in the turbulence,
and (b) even if this viscosity increase were known, no re-
liable way exists to predict the drag reduction. More-
over, even the basic idea about the importance of the
viscosity increase has been open to doubt, since the cal-
culations predicting large values of the eff'ective viscosi-

ty, quoted by Lumley, are relevant only to the nearly
fully stretched polymer chains (see below), while in a
turbulent flow the chains are in the state of incessant
transient stretching and contraction, thought to occur
"affinely, " i.e. , the elongation of the chain essentially fol-

lows the elongation of the fluid element. This incon-
sistency in Lumley's picture was noticed recently by de
Gennes, who concluded that "the Lumley scheme
(may) hold for (rigid) rods" since "they cannot follow
the local deformation affinely, as done by the (polymer)
coils"; for the latter de Gennes proposed a completely
difrerent approach, where partially stretched chains
behave elastically, and the viscosity increase is of no im-
portance. This approach too has not led to any quantita-
tive predictions that could be compared with experimen-
tal data. Besides, some assumptions in Ref. 6 are hardly

justifiable.
We will see in a moment that the basic idea of

Lumley's hypothesis (though not its quantitative as-
pects ) can nevertheless be useful, provided one employs
the "yo-yo" model of the polymer dynamics in transient
extensional flows, proposed by Ryskin. I then construct
a quantitative theory of drag reduction. , using this idea,
using the yo-yo model to predict the viscosity increase in

turbulence, and finally relating this viscosity increase to
a drag reduction parameter (the slope increment).

In brief, the yo-yo model says that while the elonga-
tion of a polymer chain in an extensional flow does follow
the elongation of the fluid element if the strain rate
exceeds a critical value, the polymer chain does n.ot de-
form affinely with the fluid, but unrai. els, whereby the
central portion of the chain is straightened out first and
then remains taut and grows in length at the expense of
the two coiled portions at the ends; these end portions
move apart under the influence of the flow, simultane-
ously diminishing in size. If the flow later becomes
weak, the chain will curl back into a coil. The taut cen-
tral portion generates large additional stress via a dissi-
pative mechanism.

The yo-yo model is thus radically diff'erent from any
other model of polymer dynamics, in that it predicts a
very large polymer eff'ect during the transient deforma-
tion of a macromolecule by the extensional flow, i.e.,
when the stretching is only partial. Recall that the
inverse-Langevin spring of Peterlin begins to produce
large stress only when the macromolecule is stretched to
about 90% of its contour length, while the rigid-rod
result of Batchelor can be applied only to "fully"
stretched chains (unless one invokes the yo-yo model ).
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The fundamental reasons for this radical dilference (the
breakdown of the thermodynamic approach) are dis-
cussed in Ref. 8.

It is shown in Ref. 8 that in a uniaxial extensional flow
the eA'ect of polymer is equivalent to a viscosity increase,
and, in particular, if 1+ / denotes the ratio of the instan-
taneous efr'ective viscosity in a fluid element of the poly-
mer solution to the viscosity of the solvent, we have

j=0.3c [q]g,
where [tl] is the intrinsic viscosity, (=1/l„ is the instan-
taneous relative elongation of a polymer chain from the
beginning of the supercritical unravelling, l is the hydro-
dynamically effective length of the chain, l„=4R„is the
value of this length just before the beginning of the su-
percritical regime, and R„ is the eAective radius of the
coil in a quiescent Iluid. The numerical factor 0.3 in (1)
is actually a very weak (logarithmic) function of c[tl],
but we will ignore such complications here. The corn-
bination c [tl] is essentially the relative concentration
c/c*, where c* is the overlap threshold; c/c* (( I in di-
lute solutions.

The value of g corresponding to the full extension,
,„, depends on the polymer and on the solvent quality.

The total (contour) length of the chain L can be written
as L =Na, where N is the polymerization index, and a is
the maximum (stretched) length of a repeat unit, e.g. ,
for polyethylene oxide a corresponds to a trans (planar
zigzag) conformation and thus' a=3&&(1.5 A)cos35'
=3.7 A. We also have

]/3 &/3

R„= —[ ] =046
loz n NA

where n is the number density of the macromolecules in

solution, M is the molecular weight, and NA is the Avo-
gadro number. Then

(~,„=L/4R„=0.55[Nba N /M [q]] '

where M, =M/N is the molecular weight of a repeat
unit. For example, '' (,„=110for polyethylene oxide
with M =8 x 10;j,„should scale as M t in a good sol-
vent.

In order to apply (1) in turbulence, we need some
mean value of g (denoted as g,„,b), which must be deter-
mined by g,„and the characteristics of the turbulence.
We are, of course, interested in g,„„b only upon onset of
drag reduction, which occurs when rlu~/v, =1, where rl
is the longest relaxation time of the macromolecule,
u+ —= (r /p) 't is the friction velocity, p is the density,
and v, is the kinematic viscosity of the solvent. ' ' The
coil-stretch transition' ' begins when the strain rate
roughly exceeds zi '. The mean value of the microscale
(Kolmogorov) strain rate (e/v, ) ', where e is the energy
dissipation rate per unit mass, is about 0.5u„/v, just out-
side the viscous sublayer, ' but the relevant quantity is,
probably, the component of the rate of strain along the
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vorticity vector, since extension in other directions is im-
peded by the rotation of the coil with vorticity. The
mean value of this component has been estimated' as
0.2(e/v, ) 't, and is therefore about 0. 1 u~/v, . The peak
values are, of course, much higher, and it is the peak
values that are important because of the hysteresis char-
acter of the coil-stretch transition —once a chain has
been extended, a much smaller (by about g times) strain
rate is required to keep it extended (or extending) than
what was required to start the coil-stretch transition in

the first place. ' ' (The persistence time of the strain-
rate field, which plays an important role in Lumley's
analysis, cannot be relevant since it is much longer'
than is necessary for a fluid element, elongating exponen-
tially in a strain-rate field, to increase in length by g,. „
times. )

This hysteresis occurs because the viscous pull (which
tries to stretch the chain) and the entropic restoring
force (which tries to bring it back to the coiled state) de-
pend very diA'erently on the elongation of the chain: The
former grows quadratically with the elongation, while
the latter grows linearly at first, up to rather large
elongations, then faster and faster, and finally extremely
fast as the full stretching is approached. ' The relatively
slow initial growth of the restoring force leads to the hys-
teresis, while its eventual very fast increase implies that
the final elongation of the chain will be nearly inde-
pendent of the strain-rate magnitude. ' This means
that, upon onset of drag reduction, the value of g,„,b
should be approximately independent of the turbulence
intensity, and thus mainly determined by g,„. (We
are considering a monodisperse polymer sample here;
polydispersity will lead to more and more chains of lower
and lower M being stretched as u~ increases. ) It will, of
course, be less than g,„, for two reasons: (a) Even in a
steady extensional flow with high strain rate the chain
elongation can never reach g,„because of the gradual
increase of coiling towards the ends; it is, however, likely
to approach g,„rather closely, ' so this effect should
not be too important; (b) because of the inherent un-
steadiness of turbulence, the strain-rate component along
an extended chain should eventually decrease or change
sign, and so the chain should temporarily contract [but
note that the direction of a material line element con-
taining the extended chain is "always being turned to-
wards the direction in which the rate of extension is
greatest, so that the rate of extension (along this materi-
al line). . . is a biased sample of rates of extension with a
preference for large positive values"' ]. I now introduce
a numerical factor a such that gt„„b=ag,„(or, more
precisely, (g )—:a g,„). Obviously, a is less than 1. No
attempt to calculate a rigorously will be made here.

We thus obtain for the polymer eAect on the viscosity
in turbulence, v,„,b= v, (1+/,„,b), the following expres-
sion:

g,„,b=0.05a Np, a N c/M,
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This completes the first part of the problem; now we

need to find the relationship between the viscosity ratio
v„,b/v, and some quantitative characteristic of drag
reduction. The most suitable is the slope increment 6',

defined as follows. The classical Prandtl's resistance law

for a (Newtonian) turbulent flow in a pipe is

f ' =21ogio(Rf ' ) —0.8, (3)

0.8 61ogio(Rf )g, (4)

where the subscript p stands for "polymer solution, " sub-

script o means "at onset, " and the last term owes its ori-
gin to the definition of the onset as the point where (3)
and (4) cross. (Our 6 is one-half that of Virk's. ')

We shall now relate 6 to v,„,b/v, via the following sim-

ple (in retrospect!) argument. The two constants, 2 and
—0.8, in Prandtl's law (3) are of different nature —the
first is "purely inertial" (independent of rheology), and
is completely determined by the von Karman constant
(the proportionality factor between the distance from the
wall and Prandtl's mixing length), while the second de-

pends on both the von Karman constant and the thick-
ness of the viscous sublayer. This means that if in a
polymer solution flow the wall shear stress T„were equal
to the velocity gradient at the wall times v, „„b (instead of
v, ), the resulting "fictitious" friction factor ff would

satisfy a resistance law similar to (3), with the same fac-
tor 2 in front of the logarithm, but with an additive con-
stant different from —0.8. The relation between ff and

f~ is, obviously, ff =(v,„,b/v, )f~ We thus obta. in

(v /v ) ' f ' =21oglo(Rf '/ )+const,

where const includes all additive terms. Therefore 2
+ 8 =2(v,„„t,/v, ) '/ and so

6=2(1+g,„,b) ' —2. (5)

In one important aspect the above short derivation of
Eq. (5) difl'ers from all the previous attempts to relate
the viscosity increase to drag reduction parameters: It is

completely rigorous.
The relations (2) and (5) are the principal results of

the present work; together they comprise a complete
theory of the turbulent drag reduction by polymers.

The experimental data for 6 are usually presented in

the form of a power law. For small drag reductions (5)
yields 6=$$Upb while for large g«, b we get 8=2gt'„,q.

The experimental results' for very small drag reductions
(with use of polyacrylamide, M, =71, a=2.5 4) were

where f 2APd/pU =8r„/pU =8u+/U is the friction
factor, R —=Ud/v is the Reynolds number, d, P is the pres-
sure loss per unit of length of the pipe, d is the pipe
internal diameter, and U is the bulk average velocity.
On the other hand, data from the drag-reduction experi-
ments satisfy'

f —1/2 (2+ $)logio(Rf I/2)

shown to satisfy 6=9.7x10 c, where c is in grams per
cubic centimeter. The present theory predicts (if we
take' M =25 x 10 )

6=0.05a N~a M c/M, =8.2x10 a c,

so that exact agreement with the data would result if
a =0.23.

In the crossover regime a power-law representation of
(5) would give an exponent between —,

' and 1, in general
agreement with the B~c observation by Berman and
Yuen. For large values of 6 Virk ' found that the fol-
lowing correlation describes the data for polymers with
methylene, oxyethylene, and siloxane backbones:

6 = 3 5 x 10 (/Vvc/M ) ' (6)

easily solvable for a given f, by Newton's method. For
small g,„,b it follows from this equation that the percen-
tage drag reduction is proportional to g,„,b. The
coe%cient of proportionality depends on the flow condi-
tions (the constant value of 1, or 100%, predicted for this
coefficient by Lumley is incorrect).

This work was initiated when I was visiting the Chem-
ical Physics Department of Weizmann Institute. I am

where Nv is the number of "backbone chain links"; in

the case of the above polymers the term "link" was used

by Virk to designate a single bond, so that Nz=bN,
where b is the number of skeletal bonds in one repeat
unit. Comparison with the present theory is facilitated if
we note that for these polymers the value in centimeters
of N~ a is approximately equal to b. Thus the present
theory predicts

/=0 45ai/2(b 3/Vic/M) '/2

and so a=0.18 would lead to exact agreement in this
case.

For cellulosic-backbone polymers (guar gum and hy-
droxyethylcellulose) the experimental values of 6 were
about 20 times higher ' than what would result from
Virk's correlation (6). The reason for this becomes clear
now: Virk s link is about 4 to 8 times longer in these
cases, and so the factor 4 to 8 is missing.

Overall, the agreement with experiment is surprisingly
good, especially so for a theory that does not take into
account the polydispersity of the polymer sample.
Whether or not this agreement is partly fortuitous can
only be decided by further experiments, which can also
establish the value of a with greater accuracy.

Finally, knowing 8' and the onset parameters (or ri),
one can easily compute the "percent drag reduction"
(1 f~/f, ) x100%, w—here fp and f, correspond to the
same Reynolds number. If one denotes k =f~/f„and
uses (3) and (4), one obtains an equation for k

f ' k ' + (2+ I$) log

=f '/ +6'[0 Sf '/ +04 —log|0(Rf'/ ) ]
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P. G. de Gennes, and N. S. Herman for helpful discus-
sions.
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