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Measurement of Subpicosecond Time Intervals between Two Photons by Interference
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A fourth-order interference technique has been used to measure the time intervals between two pho-
tons, and by implication the length of the photon wave packet, produced in the process of parametric
down-conversion. The width of the time-interval distribution, which is largely determined by an interfer-
ence filter, is found to be about 100 fs, with an accuracy that could, in principle, be less than 1 fs.

PACS numbers: 42.50.Bs, 42.65.Re

The usual way to determine the duration of a short
pulse of light is to superpose two similar pulses and to
measure the overlap with a device having a nonlinear
response.! The latter might, for example, make use of
the process of harmonic generation in a nonlinear medi-
um. Indeed, such a technique was recently used? to
determine the coherence length of the light generated in
the process of parametric down-conversion.® The coher-
ence time was found to be of subpicosecond duration, as
predicted theoretically.* It is, however, in the nature of
the technique that it requires very intense light pulses
and would be of no use for the measurement of single
photons. On the other hand, if we are dealing with two
photons and wish to determine the time interval between
them, which has a dispersion governed by the length of
the photon wave packet, we are usually limited by the
resolving time of the photodetector to intervals of order
100 ps or longer.®

We wish to report an experiment in which the time in-
terval between signal and idler photons, and by implica-
tion the length of a subpicosecond photon wave packet,
produced in parametric down-conversion was measured.
The technique is based on the interference of two two-
photon probability amplitudes in two-photon detection,
and is easily able to measure a time interval of 50 fs,
with an accuracy that could be 1 fs or better.

An outline of the experiment is shown in Fig. 1. A
coherent beam of light of frequency w( from an argon-
ion laser oscillating on the 351.1-nm line falls on an 8-
cm-long nonlinear crystal of potassium dihydrogen phos-
phate, where some of the incident photons split into two
lower-frequency signal and idler photons of frequencies
w; and w,, such that

wo=w|+ w>. 1)

The two signal and idler photons are directed by mirrors
M1 and M2 to pass through a beam splitter BS as
shown, and the superposed beams interfere and are
detected by photodetectors D1 and D2. We measure the
rate at which photons are detected in coincidence, when
the beam splitter is displaced from its symmetry position
by various small distances *c¢&t. It should be em-

phasized that the signal and idler photons have no
definite phase, and are therefore mutually incoherent, in
the sense that they exhibit no second-order interference
when brought together at detector D1 or D2. However,
fourth-order interference effects occur, as demonstrated
by the coincidence counting rate between D1 and D2.6-8
The experiment has some similarities to another, recently
reported, two-photon interference experiment in which
fringes were observed and measured, but without the use
of a beam splitter.®

Although the sum frequency w,+w; is very well
defined in the experiment, the individual down-shifted
frequencies ®;,w; have large uncertainties, that, in prac-
tice, are largely determined by the pass bands of the in-
terference filters IF inserted in the down-shifted beams,
as shown in Fig. 1. These pass bands are of order
5x10'2 Hz, corresponding to a coherence time for each
photon of order 100 fs. Needless to say, the two-photon
probability amplitudes at the detectors D1,D2 are ex-
pected to interfere only if they overlap to this accuracy
or better. We start by examining how this interference
arises.

Let us label the field modes on the input sides of the
beam splitter by 01,02 and on the output sides by 1,2
and suppose first that the light is monochromatic. If we
take the state at the input resulting from one degenerate
down-conversion to be the two-photon Fock state
| 1o1,102), then one can show from general arguments’
that the state on the output side of the beam splitter is
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FIG. 1. Outline of the experimental setup.
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given by
[ Woud =(R—=T)|1,,10+i(QRT)"2|2,,0,)+i(2RT) 2] 0,,2,), )

where R and T are the reflectivity and transmissivity of the beam splitter, with R+ 7T =1. It follows that for a
50%:50% beam splitter with R =+ =T, the first term is zero by virtue of the destructive interference of the correspond-
ing two-photon probability amplitudes. No coincidences (other than accidentals) should therefore be registered by
detectors D1 and D2.

In practice the down-shifted photons are never monochromatic. Let us represent the two-photon state produced by
the potassium-dihydrogen-phosphate crystal by the linear superposition

|“’>=fd“’¢(w1’wo—w1)lwl,wo—wl), )

where ¢(w;,w,) is some weight function which is peaked at w; = + wo=w,. (A plausible example is given in Ref. 8.)
We assume here that the directions of signal and idler photons are reasonably well defined by apertures, but the fre-
quency spreads are substantial; in practice they are largely determined by the interference filters IF. Then the joint
probability of the detection of photons at both detectors D1 and D2 at times ¢ and ¢ + 7, respectively, is given by’

Pi()=KE{TWEST G+ DET G+ EMN (), (4)

where £{*’(t) and E{* (1) are the positive-frequency parts of the fields at detectors D1 and D2, and K is a constant
characteristic of the detectors. £ 1’(¢) and E{*’(¢) are related to the fields £§;° () and E&(¢) at the two mirrors

M1 and M2 shown in Fig. 1. If R+ T =1, then
EM @) =VTE{ ¢ — 1)) +iVRES (t — 11+ 67),
EN W) =VTESF t — 1) +iVRE (t — 1, — 671).

()
(6)

Here t; is the propagation time from mirror to detector, and =% ¢ &7 represents the small displacement of the beam

splitter BS towards one or the other detector.

By combining Egs. (3) to (6) we may readily show that the joint probability is
Pi(0)=K|G0)|*T?|g(2) |2+ R?|g(267— 1) | 2= RTIg*(1)g(281— 1) +c.c.]}, @)

where G (1) is the Fourier transform of the weight func-
tion ¢(wo/2+ w,wo/2 — @) with respect to w,

G(7) =f¢(w0/2+ w,00/2 —w)e " dw, (8)

and g(r)=G(1)/G(0). This shows how P (1) varies
with the time interval 7. If ¢(wo/2+ w,wo/2 — w) is real
and symmetric in o, as we assume, then G(z) and g(z)
are both real and symmetric in 7.

In practice the coincidence measurement corresponds
to an integration of the probability P,(z) with respect
to 7 over the coincidence resolving time of a few
nanoseconds, but as this time is so much longer than the
correlation time of g(r) in the experiment, we may
effectively integrate P;(z) over all z. From Eq. (7) the
expected number N, of observed photon coincidences is
then given by

J2wg(t)g(z—2617)dt
fo—oongz(r)d‘[ ’
9

where C is another constant. It follows from this rela-
tion that N,=C(R —T)? when 87=0, which vanishes
when R =% =T, whereas N. =C(T?+ R?) when 67 ap-
preciably exceeds the correlation time of g(z). A plot of
the number of coincidences N, versus the displacement

N,=C|R?*+T?—2RT

St therefore should exhibit a sharp dip near §t=0, of
width determined by the length of the wave packet, or
coherence time, of the down-shifted photons. The van-
ishing of the photon coincidence rate is a purely quan-
tum-mechanical feature of the fourth-order interference,
as has been shown. %%

In the special case when g(wo/2+ w,wo/2 —w) is
Gaussian in © with bandwidth Aw, then g(z) has the
Gaussian form

g(1r) =g 002 (10)
and Eq. (9) yields

2RT e —(Awé7)? )

(an
R*+T?

N.=C(T?+R?»|1—

In the experiment the path difference ¢ 6t was varied
by our mounting the beam splitter on a translator and
making very small displacements with a precisely cali-
brated micrometer. Still finer adjustments can be made
with a piezoelectric transducer. The coincidence count-
ing rate was measured by our feeding the amplified and
standardized photomultiplier pulses to the start and the
stop inputs of a time-to-digital converter, and recording
the time interval distribution. Because of the transit-
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FIG. 2. The measured number of coincidences as a function
of beam-splitter displacement ¢ 67, superimposed on the solid
theoretical curve derived from Eq. (11) with R/T=0.95,
Aw=3x%10" rad s~'. For the dashed curve the factor
2RT/(R?+T?) in Eq. (11) was multiplied by 0.9. The verti-
cal error bars correspond to one standard deviation, whereas
horizontal error bars are based on estimates of the measure-
ment accuracy.

time spread of the photoelectric pulses and the slewing of
the discriminator pulses, a range of time intervals cen-
tered on zero delay was obtained with a spread of several
nanoseconds. For the purpose of the measurement, pulse
pairs received within a 7.5-ns interval were treated as
“coincident.” Pulse pairs received within an interval of
35 to 80 ns were regarded as accidentals, and when
scaled by the factor 7.5/45 provided a measure of the
number of accidental coincidences that occur within any
7.5-ns interval.

The results of the experiment are presented in Fig. 2,
which is a plot of the number of observed photon coin-
cidences, after subtraction of accidentals, as a function
of the displacement of the beam splitter. It will be seen
that for a certain symmetric position of the beam spli-
tter, the two-photon coincidence rate falls to a few per-
cent of its value in the wings, by virtue of the destructive
interference of the two two-photon probability ampli-
tudes. The width of the dip in the coincidence rate pro-
vides a measure of the length of the photon wave packet.
It is found to be about 16 um at half height, correspond-
ing to a time of about 50 fs, which should really be dou-
bled to allow for the greater movement of the mirror im-
age. This time is about what is expected from the
passband of the interference filters.

Direct measurements of the beam-splitter reflectivity
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and transmissivity show that R/T = 0.95, which makes
the combination 2RT/(R?+T?%)=0.999, and implies
that V. should fall close to zero when 67=0. That it
does not fall quite that far is probably due to a slight
lack of overlap of the signal and idler fields admitted by
the two pinholes, causing less than perfect destructive in-
terference. The solid curve in Fig. 2 is based on Eq. (11)
with R/T=0.95 and Aw=3x10"3 rad/s =~5x10'? Hz,
if we identify ¢ 6t with the beam-splitter displacement
(x —302.5) in micrometers. For the dashed curve the
factor 2RT/(R?+ T'?) was multiplied by 0.9 to allow for
less than perfect overlap of the signal and idler photons.
It will be seen that, except for the minimum, Eq. (11) is
obeyed quite well, corresponding to a coherence time of
about 100 fs.

We have therefore succeeded in measuring sub-
picosecond time intervals between two photons, and by
implication the length of the photon wave packet, by
a fourth-order interference technique. Unlike second-
order interference, this method does not require that
path differences be kept constant to within a fraction of a
wavelength. The method is applicable to other situations
in which pairs of single photons are produced, but be-
comes less efficient for more intense pulses of light, be-
cause the “visibility” of the interference is then reduced
and cannot exceed 50% at high intensities.® In principle,
the resolution could be better than 1 um in length or 1 fs
in time.
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