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Geometrical Interpretation of SO(7): A Critical Dynamical Symmetry
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Potential-energy surfaces are obtained for the three dynamical-symmetry chains of SO(8) within the
fermion-dynamical-symmetry model. A remarkable feature is that the SO(7) dynamical symmetry is
transitional and P soft. The transitional or "critical" behavior of SO(7) is vividly demonstrated.
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The use of the concept of dynamical symmetry has
been one of the most important developments in

nuclear-structure physics in the last decade. ' To date,
however, a dynamical symmetry, i.e., a group chain, is
always associated with a particular collective mode.
Thus, for the nuclear system to exhibit a phase transi-
tion, i.e., going from one collective mode to the next, it
must occur from one dynamical symmetry to the next.
In this Letter, we shall point out that there in fact exists
a dynamical symmetry in nuclear physics, which is en-
tirely fermionic in nature, which shows all the physical
characteristics of a phase transition within the dynamical
symmetry. We shall define such a dynamical symmetry
as a critical dynamical symmetry.

Recently, Wu et al. proposed a fermion-dynamical-
symmetry model as a realistic model to study the phe-
nomena of high- and low-spin nuclear collective states.
The basic ingredient of the fermion-dynamical-symmetry
model is to construct SO(8) and Sp(6) symmetries" via
the symmetry-dictated 5 (1=0) and D (1=2) fermion
pairs which can be uniquely associated with the normal-
parity single-particle states of the physical shell model.
It was further demonstrated that nuclear data in the
Pd-Ru region can be considered as empirical evidence of
one of the group chains of SO(8) [heretofore referred to
as the SO(7) symmetry]. It was suggested that this
symmetry has an inherent "transitional" behavior, a
behavior unknown to the previously studied dynamical
symmetries in nuclear physics. From the presented re-
sults, the predicted behavior of nuclei with SO(7) sym-
metry is vibrational-like for small valence-particle num-
ber and y-unstable rotational-like [i.e., SO(6)] for large
valence-particle number. It is the purpose of this Letter
to explore the physical properties of this unique system
and to demonstrate how its transitional character devel-
ops by studying the energy surface. To do so we use the
coherent-state method, which is also equivalent to the
most genera1 Hartree-Fock-Bogoliubov method.

The coherent states of a quantum many-body system
possessing dynamical symmetry G, and also the most

H=GpStS+b P P +b3P 'P +b&P 'P (2)

In Eq. (2), P" is the rth multipole operator of SO(8). In
order for the SO(8) Hamiltonian in Eq. (2) to exhibit
SU(2)SSO(5) (the pairing limit), SO(7), and SO(6)
(the y-unstable rotational-like limit) dynamical sym-
metries, the parameters (Go, b2) are b2=0, Go=b2, and
Gp =0, respectively. The choice of b ] and b 3 does not
affect these dynamical symmetries. Without any loss of
generality, we shall take b] =b3=b. Obviously this en-
ergy surface is a function of the twelve-dimensional pa-
rameters gq„. However, the parameters gq„can be con-
nected more closely with the familiar "deformation" pa-
rameters of nuclei, P and y, which we will now define.

As it turns out, one can rather easily transform
(ri ~H ~ q& in terms of p and y as follows: (a) Use the
fact that the coherent state of Eq. (1), which is a HFB

general Hartree-Fock-Bogoliubov (HFB) states which
conserve G, can be constructed from the so-called
Gi'amore algori thm which generalizes the well-known
Glauber coherent states, where G =H(4), to all com-
pact Lie groups. The method has proven to be very
powerful in the study of the phase transitions of any
physical models with group symmetry. The SO(8)
coherent states

~ ri) are constructed from the action of a
displacement operator T(ri) acting on the core vacuum
fo&:

~&&=T(&) ~0&

=exp(qooS t+ g„t12„D„—H.c.) 10).

In Eq. (1), qq„are twelve-dimensional parameters, T is
the coset representative of the coset space Spin(8)/
U(4), ' and St (D„) creates a monopole (quadrupole)
pair of fermions. Traditionally, the study of the phase
transition of the nuclear system is equivalent to the study
of the critical behavior of the energy surface. Here, the
energy surface is the expectation value of the Hamiltoni-
an evaluated with the coherent states: (q ~

H
~
tl), where

H is the SO(8) Hamiltonian2
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E(P) =R(co)(rl
I
H

I rl)R(rp) (3)

where R(rd) is the rotational operator to transform the
matrix into the intrinsic coordinate system. The defor-
mation parameters are as follows:

Qo =R (cp)(tl I po I rl)R (rp)

=2' (n/2n —P ) 'i Pcosy,

Q2 =«rp)(tl
I P2 I q)«rp)

=420 (n/2f}, —P ) '
P sing,

(4a)

(4b)

where Qp and Q2 are the intrinsic quadrupole moments.
In Eqs. (4), n corresponds to the nucleon number. It
should be noted that the existence of the square-root fac-
tor in 4(a) and 4(b) rellects the fact that the system is
made up of a finite number of fermions and hence the
Pauli principle is entirely taken into account.

state" for the SO(8) irreducible representation (0,0, 0,
ft/2) [0 =g (2j+ 1)/2, where j is the usual shell-model
single-particle angular momentum ], is the most general
intrinsic ground-state wave function within the model
which must have time-reversal invariance for an even-
even nucleus. ' (b) Fix the expectation value of the
valence-particle-number operator to be n. These two
conditions, which will reduce the number of parameters
from twelve to five, are the standard conditions imposed
on the HFB theory. (c) Of the remaining five parame-
ters, three can be considered as the Euler angles (ro)
while the other two would correspond to the deformation
parameters P and y. Transforming (ri I H„ I q) into the
intrinsic coordinate system, we can show that for H the
energy surface depends only on P,

We can now study the energy-surface behavior of H
[for SO(7)] of Eq. (2):

E(P) =A4P +A2P +Ap+Ap, (5)

where the parameters A4, A2, Ap, and 2& are

A, = —2n [Gp(n+4)+4b],

A2 =n [Go(ft+4)+4b],

(6a)

(6b)

nAp=Gp
2

2n n+6 +—bn I—,(6c)n

n 4 2n

A~ = [Go(0+4) —4b] —2P
2 20

n1—
20

' 2
n—4

2Q

. ]/2

O' P' (6d)

The formulas presented in Eqs. (5) and (6) are for the
SO(7) symmetry. In an analogous way, one can com-
pute the energy surfaces for the SU(2)SO(5) and
SO(6) group chains as well. The details can be found in

a forthcoming paper. '

First we shall study the transitional behavior for b =0.
In Fig. I, we plot the energy surfaces as functions of P
for the (a) SU(2) SSO(5), (b) SO(7), and (c) SO(6)
symmetries. For (a), which is the usual vibrational lim-
it, the minimum energy occurs at Pp=0. For the SO(6)
symmetry (c), the minimum energy exists for Ppp 0
[=(n/4n) 'i l. An important feature of (a) and (c) is
that as the particle number n increases, there is a
deepening of the minimum energy, i.e., the rigidity in Pp
is enhanced. Comparing (a) and (c) to (b), the SO(7)
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FIG. l. Energy surfaces of the symmetries of (a) SU(2) SSO(5), (b) SO(7), and (c) SO(6), with b=0. The parameters (Gp, b2)
(in kiloelectronvolts), taken from Ref. 5, are (—45,0), (—45,—45), and (0,—45) for (a), (b), and (c), respectively. The value of
0 =16. The value of n ranges from 2 to 16 in all three calculations.
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FIG. 2. Energy surfaces of the SO(7) symmetry with (a) b & 0 and (h) b & 0. The magnitude of b is 5.3 keV. All other parame-

ters (Q, Gp, b2) are the same as Fig. 1(b). The value of n ranges from 2 to 16 in all three calculations.

symmetry which has Pa=0 for the minimum energy, we
immediately see a striking difI'erence; namely, as n in-
creases, the system's Po =0 rigidity is, in fact, relaxed for
the SO(7) symmetry. Indeed, for n = II, the energy sur-
face of the SO(7) symmetry becomes completely "P
soft" between P = ~ —,

' .
Next we shall study the efIect of the dipole and octu-

pole interactions on the SO(7) symmetry. Indeed, as we
shall now show, the P softness of the SO(7) symmetry is
the reason for the critical behavior of the dynamical
symmetry of Eq. (2). To show this, we shall study the
SO(7) symmetry with a small value of b&0. In Figs.
2(a) and 2(b), the results of the energy surface for the
SO(7) symmetry with b & 0 and &0, respectively, are
presented. It is seen that for b & 0, the eAect of the di-

pole and octupole terms is, in eAect, to stabilize slightly
further the Po=0 minimum for the energy. This is espe-
cially clear when n = 0 where there is now a minimum at
Po=0. On the other hand, for b & 0, the system behaves
in a rather remarkable manner; namely, for low n, it is
vibrational (i.e. , Po=0) and for some finite value of n,
which we shall denote as n, (namely, that value of n
which the second derivative of the energy surface at
Pp =0 is zero), the system actually jumps from the vibra-
tional behavior (Po=0) to a behavior similar to the @-

unstable rotor (Po&0). The reason why this occurs is
because unlike the SU(2) @SO(5) symmetry fFig. 1(a)l,
SO(7) symmetry [Fig. 1(b)] loses its Po =0 rigidity with
an increase in particle number n. Therefore, as the sys-
tem becomes more P soft, any additional interaction
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FIG. 3. (a) P value of the minitnum energy plotted as a function of the particle number n, with b = —5.3 keV. (b) P value of the
minimum energy plotted as a function of b.
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which still keeps the SO(7) symmetry and which has the
effect of having the Po =0 as the maximal point in ener-

gy, and in this case it corresponds to b & 0, will drive the
system at some n, away from the vibrational behavior.

One can show analytically that for the SO(7) symme-
try, n, is

n, = Sl Il —[4b/(f1+4)Go) '"l. (7)

Clearly, since the pairing strength Go is attractive, the
strength b must be negative in order for a real value of
n., to exist. Therefore, the crucial strength parameter
which determines the existence of the critical behavior is
b In Fi.gs. 3(a) and 3(b), plots of the variation of P as a
function of b and of n, respectively, are given. In Fig.
3(a), the SU(2) SSO(5) curve coincides with the SO(7)
curve from zero to n, Be. yond n„ the SO(7) curve
quickly approaches the SO(6) symmetry at n =A. Fig-
ure 3(a) clearly demonstrates the transitional nature of
the SO(7) symmetry. On the other hand, Fig. 3(b)
shows that for fixed n, nonzero Po values for the
minimum energy occur at negative values of b only,
which is indeed in agreement with the finding previously
shown. The energy surface of Eq. (5), which is only a
function of P, corresponds to a second-order phase tran-
sition.

In summary, the SO(7) symmetry was previously
shown to be a good description of the Pd-Ru isotopes and
was suggested to behave in a transitional manner. By
using the coherent-states method, we have demonstrated
in this Letter that it is indeed an example of the critical
dynamical symmetry. This reveals (a) the possible ex-
istence of the critical dynamical symmetry in physics and
(b) that the SO(7) symmetry has the characteristic of
being P soft.
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