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Radiation Focusing and Guiding with Application to the Free-Electron Laser
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In the free-electron laser the interaction between the radiation and electrons can result in radiation
focusing. The radiation tends to follow the electron beam when the centroid of the electron beam is la-
terally displaced. Spatial modulation of the electron-beam envelope induces a similar modulation in the
radiation-beam envelope. These and other phenomena are studied by use of a novel source-dependent
modal representation of the fully three-dimensional radiation field. Among the merits of this approach is
that few modes are needed to describe the radiation accurately.

PACS numbers: 42.SS.Tb

In the one-dimensional analysis of the free-electron
laser (FEL) the radiation field, wiggler field, and elec-
tron beam resonantly couple so as to modify the longitu-
dinal wave number of the radiation field. ' This reso-
nant interaction can lead to focusing of the radiation
beam. This phenomena was first analyzed for the low-

gain FEL with transverse effects where it was shown
that the diffractive spreading of the radiation beam could
be overcome by a focusing effect arising from the
modified index of refraction. Experimental evidence in-
dicating optical guiding in the FEL has also been ob-
served. This radiation-focusing phenomena has been
shown to play a central role in the practical utilization of
the FEL, since, in many proposed experiments the radi-
ation beam will not be confined or guided by a
waveguide structure. Recently optical guiding in FEL s

has been studied in the small-signal, exponential-growth
regime, ' for the asymptotic behavior of the radiation
beam.

In this Letter, we present a general, self-consistent,
fully nonlinear, modal representation formalism which
we apply to the phenomena of radiation focusing and
guiding in FEL's. The novel aspect of our modal expan-
sion is that the characteristics of the modes are governed
by the driving current density, as opposed to a heuristic
numerical approach, ' and hence it is called the
"source-dependent expansion" (SDE). Instead of using
the usual modal expansion consisting of t acuum
Laguerre-Gaussian functions' we incorporate the source
function (driving current) self-consistently into the func-
tional dependence of (i) the radiation waist, (ii) the radi-
ation wave-front curvature, as well as (iii) the radiation
complex amplitude. Because of the source-dependent
nature of our modal expansion, the fundamental mode
remains dominant throughout the evolution of the radia-
tion field. This approach, which can be applied to a wide
range of problems, lends itself to fast and accurate nu-

merical solutions as well as to a better analytical descrip-
tion of the FEL focusing and guiding problem, Using
the SDE approach in numerical simulations of' the FEk,
one can efticiently incorporate simultaneously the effects
of electron-beam emittance, energy spread, wriggler gra-
dients, sideband frequencies, etc.

An envelope equation for the radiation is derived
which describes the transient as well as asymptotic be-
havior of the radiation beam. The effects on the radia-
tion beam of a transversely displaced electron beam as
well as a longitudinally modulated electron beam have
also been considered.

In our model the vector potential of the radiation field
is

A~(r, O, z, t) = —,
' A(r, O, z)exp[i(coz/ —c rut)le +c.c.,

where A(r, O, z) is the complex amplitude, co is the fre-
quency, and c.c. denotes the complex conjugate. The ra-
diation field satisfies the reduced wave equation,

1 al 9 1 9 . co 6r + +2i a(r—, O z)
r t)r r)f r QO c clz

=S(r, O, z ),

where a(r, O, z) = )e )2/moc =
~
a

~
exp(ip) is the nor-

malized complex radiation-field amplitude and we have
assumed that a ' ja/tlz«co/c. The source function, 5,
has the general form

S(r, O, z) = — [1 n'(r, O, z, a)la(—r, O, =), (2)
C

where n(r, O, z, a) is the complex index of refraction.
We choose the following representation for a(r, O, z) in

terms of associated Laguerre polynomials,

a(r, O, z) =g Q,C, (O, z)Dg(r),
! where m and p =0, 1,2, . . . ,

2f' [1 i a(z)]r'—
exp

r,'(z ) r,'(z )

C p(O, z) =a ~(z)c o(sp )O+b (pz)si (np )O,

p

r, (z)

(4a)

(4b)
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In Eqs. (4a) and (4b), a p(z) and b p(z) are complex, r, (z) is the radiation spot size, a(z) is related to the curva-
ture of the wave front, and L~ is the associated Laguerre polynomial. The z dependence of these parameters will be
determined by the source function in Eq. (1).

Substituting (3) into (1) and using the orthogonality properties of L, cospO, and sinpO, we obtain

am, p+W, (z)
r)z m, p

a )p( )
im—B(z)

b (.)
a +) p(z) F p(z)

l(—m+p+1)B*(z)
b

'(
)

= i —
G '(, )

L

(5)

where

p (z ) =r,'/r, + i (2m +p + 1 ) [(1+ a )c/ror, —ar,'/r, + a '/2],

B(z ) = —[ar,'/r, + (1 —a )c/rdr, —a'/2] —i (r,'/r, —2ac/ror, ),

the prime denotes 8/Bz, the asterisk denotes the complex conjugate, and

(6a)

(6b)

Fm p(z) ) f+2$

where (=2r /r, The e.quation for a p and b p in (5)
is underdetermined, since the function B(z) can be
shown to be arbitrary. If we choose B(z) =0, for exam-

ple, we would in eff'ect be expanding the radiation field in

the conventional vacuum Laguerre-Gaussian modes. '

For a source-free medium, B =0 would be the most ap-
propriate choice. In the presence of a source term a
more appropriate choice for 8(z) can be found. This is

accomplished by our considering the case where the radi-
ation beam at z =0 has a Gaussian radial profile sym-
metric about the z axis. Let us further assume that for
z & 0 the radiation-beam profile remains approximately
Gaussian with a nearly circular cross section. In this
case, we expect the magnitude of the coe%cients,
a p(z) and b p(z), to become progressively smaller as
m and p take on larger values. A good approximation to
the radiation hearn is then given by the lowest-order
mode, app(z). From the upper component in (5), we

find that only the m =0, 1 and p =0 equations are
relevant and they are (r)/Bz+Ap p)ap p

= —iFp p and

F) p=Bapp. The upper component in (5) provides us

with a specific expression for 8 (z ) in terms of one of the
moments, F i o, of the source term. The choice of
B(z) =F) p(z)/app(z) is source dependent and when

(1+6p p) 'cos(pO)
(g ]* (6c)

cog (r, z ) e '& a~
n(r, z, a) =1+—

2 rp2 y ! a(r, z)! '

where

rod(r, z) =cobp[l'pp/rg(z)] exp[ —r /rb (z)1,

(7)

rt, (z) is the electron-beam radius, rqp =rq(0), rpqp is the
initial beam plasma frequency on axis, a„=!e!8„/
k moc is the normalized wiggler amplitude, y is the
electron's Lorentz factor, ttf is the electron's phase in the
ponderomotive wave potential, and ( ) denotes the en-

sernble average over all electrons. With the assumption
that in the source function the complex radiation ampli-
tude can be approximated by the lowest-order mode, we

find that (2) can be written as

! substituted into (6b) yields first-order coupled diA'er-

ential equations for the parameters, r, and a, of the
Laguerre-Gaussian expansion in (3) and (4a) and (4b).
Equation (5) may now be solved self-consistently for the
modal coefficients a ~ and b

We first consider the dynamics of an axially sym-
metric radiation field in the FEL. The appropriate index
of refraction ' ' for a Gaussian beam density profile
is

r

a„aoo e 1 ~s
S(g,z) = —4v '

exp ——
~

—ia
r~ Iaool y 2 Ig

where v=(rpbprpp/2c) =I~/(17&10 ) is Budker's constant and II, is the electron-beam current in amperes.
An envelope equation for the radiation beam can be obtained with use of (8) and (6b),

r,"+K (z, rb, r„ I ao o I )r, =0,

where

K =(2c/co) [ —1+C (sing) +2C(cosy)+(ro/2c)r, C'(sing)]r, (10)

and C(z ) = (2 v/y) H (z)a„/! ap p(z )! measures the coupling between the radiation and electron beam, H (z )
=(1 —F)/(1+F)2 and F(z) =rb/r, is the filling factor. The first term on the right-hand side of (10) is the usual
diA'raction term, the second and third terms are always focusing, while the last term is usually a defocusing contribu-
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TABLE I. FEL simulation parameters.

Current
Energy
Radius

Wavelength
Input power

Spot size

Wavelength
Wiggler strength
Resonant phase

Electron beam
Ib =2 kA (v=0. 118)
eb =50 MeV (y=100)
~bo =0.3 cm

Radiation beam
k =10.6 pm
P(z =0) =230 MW

I
I a(0, 0)

I

=1 84x10 ]
r, (0) =0.6 cm (z~ =10.7 m)

Wiggler field
X„=8cm
8„=2.3 kG (a„=1.716)
y~ =0.358 rad

tion. In the high-gain trapped-particle regime, (siny)
and (cosy) are approximately constant, while

i app(z) i

increases with z. Hence, E strongly depends on z and a
guided beam (r,'=0) cannot be maintained. In the low-

gain trapped-particle regime i ao o(z) i increases slightly
and, therefore, a guided beam can be approximately
achieved. In either the Compton ' or Raman
exponential-gain regime, conditions for a stable guided
beam can be found.

The FEL parameters used in the following illustrations
are similar to those used in Scharlemann' and are given
in Table I where the resonant phase approximation is
used and zR =xr, (0)/X is the Rayleigh length. We
present first a comparison between (a) the exact numeri-
cal solution of the wave equation in (1) (using 64&&64

Fourier modes), (b) the solution using a vacuum
Laguerre-Gaussian modal expansion (B=0, using ten
modes), and (c) the solution from the Laguerre-Gauss-
ian SDE approach (8 =F1 o/app, using ten modes). For
an axially symmetric configuration, we show in Fig. 1 the

evolution of the radiation-beam amplitude on axis ob-
tained from methods (a), (b), and (c). The SDE solu-
tion (c) is in excellent agreement with solution (a) while
solution (b), beyond a Rayleigh length, grossly deviates
from (a) and (c). The excellent results obtained with
the SDE approach are also reflected in the radiation-
amplitude profile. Figure 2 shows the evolution of the
radiation-beam radius, 1/e width, r~, in the linear,
exponential-gain regime of the FEL for the parameters
in Table I. Five transverse modes were used in the nu-

merical calculation. '

We now consider the case where the electron-beam
centroid is displaced transversely in the I direction. The
index of refraction in this case is given by (7) with
rub~(r, z) multiplied by [I +2(r, x1,/rp)cos01, where xb(z)
is the displacement of the electron beam's centroid and

i xt, i «rt, . In the FEL source term we consider only the
lowest-order symmetric and antisymmetric modes with
respect to the x axis. The centroid of the radiation beam
is given approximately by

r

r, (z) ao 1

XL z
J2

where xL is defined so that i a i
is proportional to

expI —[(x —xL) +y i/r, I and ( )~ denotes the real
part. Figure 3 shows the electron- and radiation-beam
centroids, xb =x, [1 —sech(k, z)] and xL, for x, =rt, /4
=0.075 cm and X, =2m/k, =z~/4=2. 7 m. In these nu-
merical illustrations, ten radial modes and two angular
modes were used. After an initial transient, the radia-
tion centroid is guided by and oscillates about the elec-
tron beam's centroid. We have also studied the situation
where the electron-beam centroid oscillates according to
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FIG. 1. Radiation amplitude on axis i a(0,z) i for (a) exact
numerical solution (64x64 Fourier modes), (b) vacuum modal
expansion solution (ten modes), and (c) SDE solution (ten
modes) at distance of z =4z~ =42.8 m.

z(m)
FIG. 2. Evolution of the radiation-beam radius, 1/e width,

rE, for initial spot sizes (a) 0.35 cm, (b) 0.24 cm, and (c) 0.15
cm.
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FIG. 3. Electron- and radiation-beam centroids, xb and xL,
for a displaced electron beam, xb =x, [1 —sech(k, z)], with
x, =rb/4 and X, =2m/k, =z~/4.

xq =x, sink, z, with x, ((rq and k, =2m/k, (z~. Because
of the high gain in the radiation field the radiation cen-
troid eventually follows the average position of the elec-
tron beam's centroid. When the electron-beam-centroid
oscillation is due to the wiggler field, there is no change
in the evolution of the radiation field.

Under certain conditions the electron-beam envelope
can be spatially modulated about the z axis if the weak
focusing force due to the wiggler gradient is not bal-
anced by the defocusing forces arising from emittance
and self-field eA'ects. It can be shown that the amplitude
and waist of the radiation field undergo a modulation
similar to the electron-beam-envelope modulation. '

We have analyzed, using the SDE formalism, a num-
ber of eAects associated with radiation focusing and
guiding in the FEL. This approach can be readily gen-
eralized to include both spatial and temporal variations
in the radiation field in order to study sideband genera-
tion and focusing eftects simultaneously in the FEL.

We acknowledge useful discussions with B. Hafizi and
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