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Thermodynamic Behavior of Tvvo-Dimensional Vesicles
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A Monte Carlo simulation of two-dimensional vesicles, modeled as closed, planar, self-avoiding teth-
ered chains, is presented. The eflects of an internal pressure increment, hp, and a bending rigidity, K, on
the sizes and shapes is studied. For x. =0 scaling behavior is found, which, in the asymptotic deflated re-
gime, hp (0, matches the behavior of branched polymers. For rc&0 various nontrivial equilibrium
shapes or cytotypes appear and dynamical behavior reminiscent of nonlinear flickering in real vesicles is
found.

PACS numbers: 05.20.—y, 64.60.—i, 87.20.—i

Polymer physics is a field in which many results from
the theory of random ~alks have been applied with
marked success. ' Similarly, recent theoretical studies of
random surfaces, largely motivated by high-energy
physics, may well find their most fruitful applications in

describing the behavior of flexible films or membranes.
Indeed, it is believed that fluidlike random-surface mod-
els may apply to amphiphilic films and bilayers, while
solidlike models, such as the tethered surface model, -

should describe cross-linked membranes or polymer
sheets.

However, in addition to the issue of fluidity, realistic
models of membranes must recognize other features.
Foremost among these is the bending rigidity, ~, which
plays a crucial role in the behavior of "tensionless" mem-
branes. It was recognized by Helfrich and others that
the shapes, thermodynamics, and fluctuation behavior of
fluid phospholipid vesicles (including red blood cells)
could be described by statistical models which include a
bending/curvature energy. Recent theoretical works on
random surfaces with K & 0 even suggests that rigidity
can lead to new phenomena such as a crumplrng transi-
tion in cross-linked membranes between a rigid, flat
phase and a floppy, crumpled phase.

Secondly, membranes often exist as closed i esicles
containing a volume of space. This naturally entails a
finite pressure increment, Ap =p;„t —p,„t, between the in-

terior and exterior. Experimentally, Ap is easily con-
trolled by, e.g. , variation of the osmotic strength of the
solvent.

As a step towards applying random-surface models to
membranes, we report here on a study of the problem
which encompasses both pressure and rigidity terms in
the energy, as well as the physically crucial self-
avoiding constraints. Specifically, using Monte Carlo
methods we have simulated closed planar random walks
or chains and analyzed their dimensions, shapes, and
equation of state. The model adopted is the analog of
the tethered surfaces of Kantor, Kardar, and Nelson:
The centers, r;, of N impenetrable circular beads of di-
ameter a are linked by blethers of length lo& a. The
bending energy is Fb =@a 'g, =, (1 —coso;), where 0; is
the angle between s;=r; —r; 1 and s;+~. Self-crossing
of the chain is avoided by our imposing lo & 2a and tak-
ing small enough Monte Carlo steps. (Usually lo/a = —',
is adopted. ) Simple, single-bead off-lattice dynamics
and a standard Metropolis algorithm have been em-
ployed. Although our model omits a spontaneous curva-
ture term, ' lacks a crumpling transition, and avoids
certain universality questions, ' its study provides valu-
able insights into membrane behavior.

As explained below, we find that the size, measured by
the mean radius of gyration, Ro(N, p, T, x.), and the en-
closed area, A(N, p, T, K), are well described for x =0

1987 The American Physical Society 1989



VOLUME 59, NUMBER 18 PHYSICAL REVIEW LETTERS 2 NOVEV~ER 1987

oI:I~+
(b)

(ii)

8

+e
4+ o0 N

)( 24—
36

o 48
x 60
+ 72
+ 84

96

0
e

I I I I

0

log{ pN~" )
FIG. 1. Scaling plots and vesicle configurations for rigidity

x. =O: (a) log~o(A/N'") and (b) log~o(R)/N ") vs log~o ~

pÃ'"~
with 2 v = 1.51 and p =2.13; samples for N =60 with (i) hp =0,
(ii) P =a zAp/ka T = —1.25.

and general P =Apa /kaT by the scaling laws

R,'= N'~(PN"), A = N'"Y(PN"),
in which v is the standard correlation length or end-to-
end exponent for (open) self-avoiding walks; one believes
that v= —,

' . We find v =0.755 ~ 0.018 and, further,
v~/v=1. 007+ 0.013 indicating that v~ = v. Since Ap
couples to 2 —N ', it is natural to expect" that @=2;
alternatively one can define'' an expansile length, l~, via

l~ =kaT/hp, and postulate a scaling combination Ro/l~.
We estimate that p =2.13+ 0.17.

For the scaling functions we get 4'(0)/a =0.116
+ 0.008 and Y(0)/a =0.29 ~ 0.02; this excludes, for

Ap =0, any "area collapse" in which A/RG 0 as
N ~: see Inset (i) in Fig. 1. On the other hand, in

the deflated regime, Ap (0, we find

A'(x) =A /x and Y(x) = Y /x',

with a =0.13 ~ 0.05 and i =0.25 ~ 0.04. These ex-
ponent values are consistent with a collapse into a form
matching branched polymers'; see Inset (ii).

One also expects definite asymptotic laws in the
inflated regime, hp & 0, analogous to an open chain un-

der a large external stretching force, f, applied to its

ends. In this regime, first analyzed by Pincus, '' the ran-
dom walk should resemble a diffuse cylinder of projected
end-to-end length Z~ =N"W(fN "/kaT)-Nf ' '~ ' asf ~. We have, indeed, confirmed this prediction for
open, planar tethered chains' but were unable to attain
the analogous inflated regime for closed chains, where
2 -N p

' ' is expected, because of computer limita-
tions.

We have also explored the interplay between rigidity
(x )0) and the external forces, Ap or f, for both open
and closed chains. For small v and large N this amounts
to no more than a renormalization of the effective bead
size a (x.) defined, say, via Ro = aN' Howev. er, for
large x with Ap, ~

f
~

~ 0 one enters a stiff regime: It ap-
pears that this occurs in nonuniversal fashion when
p„/RG=(l„/L) ' ~ I, where Ro =aN'/ describes a free
or Gaussian chain while p„=(xa/kaT)'t is a charac-
teristic radius of curvature imposed by ~& 0; alterna-
tively, l„=x/kaT is the rigidity length while L =Na is
the contour or chemical length. The efl'ects are more
spectacular for closed chains with rc& 0 and hp (0, i.e. ,
deflated t;esicles The. many sharp hairpin bends charac-
teristic of the branched-polymer regime, PN'« —

I [see
Inset (ii) in Fig. I], become too energetic and are pro-
gressively suppressed; thus the vesicles completely modi-
fy their typical shapes. When p* = (l l~ ) '/ ~ L one
finds well-defined equilibrium shapes or cytotypes
strongly reminiscent of membrane vesicles and red blood
cells ': See Fig. 2. Moreover, in the process of the simu-
lation one discovers a striking dynamic phenomenon
reminiscent of strong, nonlinear flickering" 7b: explicitly
for fixed hp & 0 and some interval of rc or T several dis-
tinct cytotypes have comparable free energies with ener-
gy barriers of order kBT between them. The vesicle
spends a mean time ~, of order of the rotational dif-
fusion time i„„ in our simulations, fluctuating about
cytotype a; this represents harmonic flickering. Then
in a time up&& T',~t the barrier is crossed and the vesicle
fluctuates around cytotype P. Figure 2(c) illustrates this
process.

We now address various issues underlying these re-
sults. ' A significant feature in studying walks and sur-
faces of ftnite size is the nonequivalence of stress and
strain ensembles. ' As indicated, we use a stress ensem-
ble, keeping hp fixed and letting 2 fluctuate subject to a
Boltzmann factor exp( —hpA/kaT) This is appropri. ate
for experiments on vesicles in which the permeation time
for the solution is short compared to other time scales,
such as r„t, rp, r„etc.

As a first step we checked Pincus scaling'' for open
chains': The scaling function, W(y), switches from a
pseudo Hooke's-law regime, ' where W(y) = Woy"'
with coo =1.00 ~ 0.010, for y=fN'/kaT ~0.25 to the
stretched regime, where W(y) = W+y ' and co+ =0.33
+0.03= v ' —1, for y&0.45. Evidently, the crossover

is quite sharp. ' These simulations allo~ed us to gauge
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FIG. 2. Vesicle cytotypes: (a) for p = —1.25 as l,ja
=—x jakaT increases; (b) for l ja =50; and (c) as a function of
time, t, for p = —0.075 and l,ja =10.

equilibrium and correlation times: We endeavored to
satisfy various criteria: (i) relaxation of the observed
variable, RG, 2, etc. , (ii) rotation by 180' of the princi-
pal axes of inertia; (iii) difl'use translation of the center
of mass by ~R~. The requisite simulation times were
(1 —50) &10 Monte Carlo steps per bead, which en-
forced the limit A' ~100. '

To test the scaling (1) and determine v, v~, and p we
first set Ap =0 and study the variation of 2 and its flfuc
Iuations. Indeed, the linear response theorem and scal-
ing yield

(~W)'—= (~') —(~)'=6W/6P —N '" ", (3)

and similarly for hR~. This leads to the exponent esti-
mates quoted above. ' Using these we construct scaling
plots; as seen in Fig. 1 the data collapse is good and the
well-defined power laws (2) emerge for pN~'+ —10 . —
In this deflated regime one thus has Rg —%' and

4 —N " with v =0.65+ 0.04 and 2v~ =1.11+0.09.
This compares well with the estimates v =0.65, 0.61
for branched polymers, ' and the expectation A =%a
for deflated or collapsed branches. To confirm the
identification fully, our simulations should be extended
to larger Ã, and self-avoiding hinged rods in place of
tethered beads might prove advantageous.

Figure 2 shows various vesicle cytotypes for % =60,

v & 0, and hp ~ 0. Each picture consists of the superpo-
sition, with common center of mass and principal axes of
inertia, of about 50 consecutive but statistically indepen-
dent vesicle configurations; only the centers of each bead
are plotted. The finite thickness of each cytotype, for
tcjakBT~ 5, reflects the harmonic flickering, i.e., thermal
fluctuations. As mentioned, the relevant length scales in
this cytotype regime are

lp =
~ kBT/hp

~

'j, l„=tc/kaT, and L =Na.

The characteristic radius of curvature of the lobes in the
well-developed cytotypes is of order p* =(l~l„) 'j ~L.
Figure 2(a) shows how increasing l„at fixed p moves one
from difluse, fractal branched polymers at x =0 towards
the dumbell cytotype which can be regarded as the ana-
log of real discocytes. ' It must be stressed that if one
increases N (or L) while keeping hp and tr fixed, one will
recover the random-chain or flaccid-vesicle (K=0) forms
illustrated in the Fig. 1 insets. Thus the study of the
cytotypes can be regarded as an aspect of finite size-
effects

Figure 2(b) shows an evolution at fixed rigidity,
l„/a =50, as the deflation,

~ Ap ~, is progressively in-
creased: Well-defined "ellipsocytes" are seen on this
route. Near p = —0.075 the plot appears to be the su-
perposition of two distinct cytotypes; indeed, inspection
of the time sequences sho~s that the vesicle evolves back
and forth between an ellipsocyte and a "bilobocyte, "
passing over a free-energy barrier of some few kBT in
height. We call this "nonlinear flickering" to distinguish
it from the normal, close-to-harmonic flickering seen
around real stable cytotypes. Figure 2(c) shows the
time evolution of another example for p = —0.075 and
l„/a =10: One symmetric and two conjugate asymmetric
cytotypes are involved. What distinguishes this non-
linear flickering is the large separation between the dwell
times i„~~, . . . , and the crossing time, ro. Of course,
the barriers may increase with Ã and, in real experi-
ments, the dynamics is more complex than ours, entail-
ing hydrodynamic modes of both solvent and fluid mem-
brane as well, for example, as specific biochemical fac-
tors in red blood cells. "

In summary, the simulation of the shapes and sizes of
two-dimensional vesicles with pressure and rigidity has
revealed a variety of very difrerent regimes, some with
simple scaling behavior, others more complex. ' Al-
though the corresponding three-dimensional simulations
will be harder and must face the extra complications
mentioned initially, ' they may be feasible and should
prove even more instructive.

We have appreciated the interest of M. P. Gelfand,
D. A. Huse, Y. Kantor, A. J. Maggs, and M. B.
Schneider and acknowledge the support of the National
Science Foundation through the Condensed Matter
Theory Program and the Materials Science Center and
NationaI Supercomputer Facility at Cornell University;

1991



VOLUME 59, NUMBER 18 PHYSICAL REVIEW LETTERS 2 NOVEMBER 1987

the latter is also funded, in part, by New York State and
the IBM Corporation.

On leave from Service de Physique Theorique, CEN Sa-
clay, 91191 Gif-sur- Yvette, France.

Now at Institute for Physical Science and Technology,
University of Maryland, College Park, MD 20742.

'See, e.g. , P.-G. de Gennes, Scaling Concepts in Polymer
Physics (Cornell Univ. Press, Ithaca, N. Y., 1979).

2Reviewed, e.g. , by J. Frohlich, in Applications of Field
Theory to Statistical Mechanics, edited by L. Garrido
(Springer-Verlag, Berlin, 1985),

3Proceedings of the les Houches Conference on Amphiphil
i c Films and Membranes, edited by D. Langevin and

J. Meunier (Springer-Verlag, Berlin, 1987).
4W. Helfrich, Z. Naturforsch. 28c, 693 (1973); D. A. Huse

and S. Leibler (to be published), and references therein.
~Y. Kantor, M. Kardar, and D. R. Nelson, Phys. Rev. Lett.

57, 791 (1986), and Phys. Rev. A 35, 3056 (1987).
6See S. Leibler, R. Lipowsky, and L. Peliti, in Ref. 3, and

references therein.
7~H. J. Deuling and W. Helfrich, Biophys. J, 16, 861 (1976).

F. Brochard and J.-F. Lennon, J. Phys. (Paris) 36, 1035
(1975).

7~M. B. Schneider et al. , J. Phys. (Paris) 45, 1457 (1984).
~Y. Kantor and D. R. Nelson, Phys. Rev. Lett. 58, 2774

(1987); D. R. Nelson and L. Peliti, to be published.
9L. Peliti and S. Leibler, Phys. Rev. Lett. 54, 1690 (1985).
'oM. E. Cates, Phys. Lett. 161B, 363 (1985); B. Duplantier,

Phys. Rev. Lett. 58, 2733 (1987).
' 'See also P. Pincus, Macromolecules 9, 386 (1976).
'2H. P. Peters et al. , Z. Phys. B 34, 399 (1979); G. Parisi and

N. Sourlas, Phys. Rev. Lett. 46, 871 (1981).
' This complements I. Webman et al. , Phys. Rev. A 31, 3516

(1985) who studied chains in d=3 dimensions.
' See also R. R. P. Singh, S. Leibler, and M. E. Fisher, to be

published.
'5See, e.g. , R. M. Neumann, Phys. Rev. A 31, 3516 (1985).
' R. A. Guyer and J. A. Y. Johnson, Phys. Rev. A 32, 3661

(1985).
' Y. Oono, T. Ohta, and K. F. Freed, Macromolecules 14,

880 (1981).
' Compare with the interesting continuum simulation by

N. Ostrowsky and J. Peyraud, J. Chem. Phys. 77, 2081 (1982).
We find that the many-lobed forms are metastable, decaying to
ellipsocytes or dumbell cytotypes.

1992


