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Edge States, Transmission Matrices, and the Hall Resistance

P. Streda and J. Kucera
institute of Physics, Czechoslovakian Academy of Sciences, 18040 Praha, Czechoslovakia

and

A. H. MacDonald '
National Research Council of Canada, Ottawa, Canada Kl A OR6

(Received 6 July 1987)

We consider the Landauer formula, relating conductances to transmission matrices, for a two-
imensional system in a magnetic field. We argue that the magnetoresistance, R, and the Hall resis-

tance, RH, satisfy the sum rule (R+RH) ' =(e /h)Tr(t t) where t is the transmission matrix. For
zero field our expressions reduce to the usual multichannel Landauer formulas. In the absence of dissi-
pation, R approaches zero, t approaches a unit matrix, and quantized values are obtained for the Hall
resistance.

PACS numbers: 72. 10.Bg, 72.20.My, 73.20.Dx, 73.50.—h

The fact that the combination of fundamental con-
stants, e /h, has the units of conductance had not been2

accorded much significance until recent years. An ex-
ception is the early work of Landauer, ' who argued that
the conductance of (spinless) electrons in a one-di-
mensional disordered medium is given by

where t and r are transmission and reflection amplitudes.
The Landauer formula, Eq. (I), and its generalizations
to more dimensions (many channels) have recently2-6

played a prominent role in the development of localiza-
tion theory, both conceptually and as a basis for numer-
ical studies. At about the same time, the quantum7,8

Hall eAect, in which the Hall resistance is quantized in

units of h/e, was discovered by von Klitzing Dorda2

9and Pepper. The appearance of the quantum unit of
conductance in both cases suggests the possibility of a
connection between Landauer-type formulas and the
quantum Hall eAect. In this Letter we present an argu-
ment which combines those customarily used to derive
Landauer formulas with those used to explain the quan-
tum Hall eAect in terms of states localized near the
edges of a two-dimensional system. ' ''

lp. k (r~) = (2tr) '"e'""ttt„k (y), (2)

where p„k (y) is localized within a length on order of the
magnetic length, 1:—(tttc/eB) 't . The energy spectrum
in the leads, illustrated schematically in Fig. 2, depends
on the continuum wave-vector index and a discrete
branch index, denoted by n. In the absence of the

E (a)

W e consider a two-dimensional (2D) sample of finite
width in a magnetic field, B, perpendicular to the sam 1e samp e
x-y) plane. We take the temperature to be zero and

neglect electron-electron interactions. The sample con-
sists of an elastic-scattering region of finite length and
width connected by ideal leads to particle reservoirs on
the left and right (see Fig. l). The leads are infinitely
long in the x direction while, in the y direction, there is a
confining potential dependent on the y coordinate only.
We use a Landau gauge [A=( —By, 0,0)] so that the
eigenstates in the ideal leads are of the form
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FIG. 1. In a strong magnetic field, the right-going states in
the ideal leads are localized along the upper edge and the left-
going states are localized along the lower edge.

FIG. 2. Schematic energy dispersion, E„(k), for the ideal
leads in a strong magnetic field. Y(k) =l k with a gently
varying confining potential. For an infinite-barrier confining
potential, E (k) is flat unless Y(k) is within =I of the edge.
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V„t, —= (nk! V„!nk) =h 'dE„(k)/dk (3)

and is related to the mean position in the y direction by

I'„t, = (nk ! y ! n k ) = l k —V„k /co, .

As V„j, approaches the upper and lower edges of the
sample, E„k is increased by the confining potential. Thus
V„j, & 0 for the states localized along the upper edges of
the ideal leads, while V„j, & 0 for states localized along
the lower edges. Each branch has positive- and
negative-velocity states localized on opposite edges. It is
this feature which necessitates a modification of the usu-
al Landauer argument.

'

Electrons are fed to the sample only along the upper
left and lower right edges, where we take the chemical
potentials to be u~ and u2, respectively (u~ & u2). An in-

confining potential, E„(k)= h cu, (n+ —,
' ), independent of

k. Here co, =eB/mc is the cyclotron frequency. The
mean value of the velocity operator in the x direction,
V, is given by

coming electron in branch n on the upper left has proba-
bilities T„.„=!t„,„! and R„„=!r„„! for transmission
into branch (channel) n' on the upper right and reflec-
tion into branch n' on the lower left, respectively. Simi-
larly, an incoming electron in branch n on the lower right
has probability T„'.„ for transmission into branch n' on
the lower left and probability R„'.„ for reflection into
branch n' on the upper right. It follows that on the
upper right all states are occupied up to energy p2, while
branch n' is occupied with probability g„T„,„ for ener-
gies between p2 and p~. Similarly, on the lower left, all
states are occupied up to energy p2 while, for energies
between p2 and p ~, branch n

'
is occupied with probabili-

ty g„R„„.These results depend only on the current
conservation conditions,

g„(T„,„+R„',„)=g„(T„',„+R„,„)=I,
which require an outgoing channel to be fully occupied if
all incoming channels at that energy are fully occupied.
The current through the system is conveniently calculat-
ed in the right-hand ideal lead, '

,

f dk e V„, t e(u~ —u2) eI =e g I P (k) V t,
= g T„.„(u~ —u2)

' = g T„„=—(u~ —u2) Tr(t tt),dE„(k )/dk h
(6)

where we have used Eq. (3) to obtain the usual cancella-
tion between the channel velocity and its density of
states. In Eq. (6), P„,(k) is the probability that branch
n' is occupied at wave vector k. The same calculation in
the left lead shows that current conservation requires

!
equilibrium without altering the carrier density. Ele-
mentary calculations give

ut L =u2+ (u( —u2) g„„,V„'R„„,/+„V„(8a)
g„,„(T„„+R„„—8„„)=0. (7) and

We now calculate the chemical potentials which would
be measured in the upper right (uUR) and lower left
(uLL) channels assuming that some inelastic scattering is
present which brings these channels into thermodynamic

RH = VH/I =(u) —uLL)/eI =(h/e ) g„„,(6„.„—R„

uUR u2+ (u 1 u2) yn „Vn Tn n' /y„Vn, (8b)

where the wave-vector index on the velocity in the nth
band has been left implicit. It follows that the Hall
resistance is given by

, „)V„' g„V„'g, T

and the magnetoresistance by

R = V+/1=(ui uUR)/eI=(h/e ) g„„,(6„,„—T„„)V„' g„V„'g, T (I0)

while

G=(R+RH) ' =(e /h) Tr(t t).
This sum rule reflects the fact that the chemical potential difference between reservoirs on the left and right is
e(V„+VH). It follows from Eq. (10) that in the quantum Hall regime, defined by the absence of dissipation (R =0),
T„„=6„„.Combined with current conservation [Eq. (7)] this gives R„„—=0 and, hence,

RH =h/Ne

where N is the number of branches crossing the Fermi energy in the ideal leads. On the other hand, when the magnetic
field vanishes, left- and right-going states in each lead will come into equilibrium at chemical potentials

uL = —, (u)+ut t ) u2+(u) ——u2) g„„,V„2 (6„„,+R„„,)/g V (I3a)
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on the left side and

pg —
2 (p2+ pUR. ) —p2+ (pl p2) g„„,V„' x —,

' T„„/Q„V„ (131 )

on the right side. In this case the conductance is given

by G =eI/(pt —pR) and the multichannel Landauer for-
mula is recovered in the form advocated by Azbel and
Buttiker et al.

In our argument we have supposed that the left-going
and right-going states on each side of the scattering re-
gion are not in equilibrium with each other. For truly
ideal leads and samples much wider than a magnetic
length, this can be expected on the basis of the local-
ization of states near the sample edges whenever E
~hru, (n+ —,

' ). Our argument should apply whenever
the Landau levels are well defined (kaT«hen, and

rur)) I), the leads are electronically two-dimensional,
and a local equilibrium is established on each edge of the
sample. It is particularly well suited to describe recent
experiments on the quantum Hall effect in narrow chan-
nels. '

Present address: Department of Physics, Indiana Univer-
sity, Bloomington, IN 47401.
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