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A discretized version of the reptation model is proposed. The tube is modeled by a one-dimensional
lattice and the polymer is modeled by a cluster of walkers, called reptons, on this lattice. Each repton
represents a part of the chain. Reptons are allo~ed to hop between neighboring sites, but the cluster al-
ways remains connected. This model is solved analytically and numerically. In the experimentally ac-
cessible range of molecular weights M it predicts the diffusion coetficient 0—M +O(M 3) and

3.4 +' 0. 1viscosity gp —M

PACS numbers: 61.41.+e, 62. 10.+s, 64.60.Ht, 66. 10.Cb

There has been substantial progress in our understand-

ing of the dynamics of entangled polymers during the
last two decades. It was based on the concepts of the
confining tube ' and reptation.

In the de Gennes reptation model, sections of stored
length were described by noninteracting defects difrusing

along the contour of the tube and collectively causing the
displacement of the whole chain. The fluctuations in the
density of randomly difrusing defects and the resulting
fluctuations in tube length were preaveraged in conven-
tional treatments of the reptation model ' leading to the
dependence of the diffusion eoe%cient D3D and the long-
est relaxation time ~, on polymer molecular weight M,

D3D —M

z, —M .3 (2)

where M, is the molecular weight between entangle-
ments and v was estimated from the variational princi-
ple to be around 1.47. The right-hand side of Eq. (3) is

approximately proportional to M over a limited range
of molecular weights. This explanation was challenged
analytically by des Cloizeaux and numerically by
Needs. They argued that the effect of fluctuations in

tube length on viscosity should be smaller than predicted
by Doi.

Other explanations of the 3.4-power law have been
proposed, ' ' but none is completely satisfa-tory.

In the present Letter, I propose and solve a simple
model of the dynamics of the single entangled chain.

Prediction (1) is considered to be experimentally
verified, while for the longest relaxation time ~„and re-
lated viscosity go, the experimentally measured ex-
ponent is 3.4+ 0.1. This diflerence between predicted
and observed exponents is one of the biggest remaining
mysteries in polymer physics.

There have been a number of attempts to explain this
mystery. -' Doi argued that. the observed 3.4 ex-
ponent is a finite-size efrect due to fluctuations in tube
length. He proposed the expression for viscosity

(3)

This model exhibits fluctuations in tube length similar to
those described by Doi. It follows in detail the dif-
fusion of defects of stored length along the contour of
the confining tube.

I restrict my discussion to the motion of a single poly-
mer. The efTect of other chains is assumed to be limited
to the formation of an entanglement net by their primi-
tive paths. ' !f the system we are dealing with is a melt
or a concentrated solution (rather than a gel), the dy-
namics of any chain ~ould be afTected by the motion of
other chains (by constraint release). This effect has to
be self-consistently taken into account. ' But in order to
do that one has to start from a reliable theory of the
single-chain dynamics. I propose a candidate for such a
theory below.

The entanglement net formed by primitive paths of
surrounding chains divides space into cells. ' '- A primi-
tive path (an axis of a confining tube) of a chosen chain
can be considered as a walk between centers of these
cells. A polymer consists of its primitive path and a set
of unentangled loops. ' ' The amount of chain length
stored in unentangled loops varies from cell to cell along
the primitive path of the chain. The objective is to solve
the dynamics of these loops, called defects by de
Gennes.

The "repton" model is a discretized version of the rep-
tation model. I represent the set of cells of the entangle-
ment net traversed by the primitive path of a chosen
chain by a one-dimensional lattice. Let us model the
sections of the chain, stored in each cell in the form of
unentangled loops and the primitive path, by objects
called "reptons" on the sites of this lattice (the number
of reptons being roughly proportional to the length of
these sections). For example, the entangled chain in Fig.
1(a) is mapped onto a connected cluster of 7 reptons in

Fig. 1(b). The coordinates of N reptons x; always obey
x~ ~ xq~ - - ~ x~. The system can also be modeled by
a one-dimensional directed random walk [Fig. 1(c)l.
Representing a section of a chain by a single repton, I
discard high-frequency modes and concentrate on low-
frequency (long-time) behavior of the polymer.

Next, I define the simplest axioms to model the dy-
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(a)
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FIG. 1. (a) A polymer in an entanglement net is confined to
a tube. Filled circles divide the chain into segments of stored
length. (b) Repton-model representation of the configuration
of 1(a). Cells of the entanglement net along the confining tube
are represented by a one-dimensional lattice. Sections of chain
length stored in these cells are modeled by walkers (reptons)
on the lattice sites. (c) Directed-random-walk representation
of the same configuration.

namics of unentangled loops.
Rule 1.—Never vacate a site in the rniddle of the clus-

ter and preserve the order of reptons: x;+] —x; is either
0 or 1 for 1=1,2, . . . , N —1.

The second rule is related to the fact that we are
mapping a higher-dimensional problem onto the (one-
dimensional) repton model. Let us assume that each cell
has z faces (gates). Then, for a section of a chain at the
end of a polymer [e.g. , section AB in Fig. 1(a)], there
are z —

1 possible gates to enter an empty cell and only
one gate to go into an already occupied one. Since in

one-dimensional lattice representation [Fig. 1(b)l all of
these z —

1 empty cells are mapped on one empty site, we

have to assume that the probability of a repton hopping
onto this empty site is z —

1 times higher than for hop-
ping onto an already occupied one.

Rule 2.—If allowed by rule 1, the probability of a rep-
ton hopping between neighboring occupied sites is 1/z,
while the probability of hopping onto an empty site is
(z —1)/z.

Consider the subset of all allowed states of the system
that correspond to K-occupied sites (K=1,2, . . . , N).
The detailed balance of the transitions between diff'erent
states implies that states within each subset have the
same probability p~, while the probabilities of states
from different subsets are related by PL/px =(z —1)

It is easy to show that any connected cluster of N rep-
tons on E sites can be mapped to a unique combination
of K —

1 zeros and N —K ones [see Fig. 1(c)]. Zeros
correspond to the boundaries between occupied lattice
points and ones correspond to multiple reptons. Indeed,
we can put K reptons (out of N) on K sites (one at each)
to satisfy the connectivity requirement. The remaining
N —K reptons (or corresponding ones) can be placed in

any combination on K sites (can be spaced by K —
1

zeros). The total number of such combinations is

(z —1) ' (N —1)!
z ' (K —I )!(N —K)!

(5)

From this probability distribution we can calculate the
average size of the cluster,

(L) =g~ )
KP(K, N) =N —(N —1)/z. (6)

As expected for a directed random walk, the average size
of the cluster (L) grows linearly with the number N of
reptons in it. Another conclusion from Eq. (6) is that
the entropic "tension" and average cluster size increase
with the coordination number z.

The fluctuations in the cluster size K around the aver-
age can be represented asymptotically by the Gaussian

S(K,N) =
(K —1)!(N —K)!

States from diAerent subsets have difI'erent probabili-
ties; therefore, the probability of N reptons to occupy K
sites is

P(K,N) = [z/[2(z —1)zN] '~
J exp[ —[z /2(z —1)N] [K —(z —1)N/z] ], (7)

which is very similar to the fluctuations in tube length
described in earlier work. ' ' '

The probability of an attempted repton jump to suc-
ceed is calculated from rules 1 and 2 to be

J = [2(z —1)/z ] [1+2(z—1)/Nj

Therefore, the diA'usion coefticient of the center of' mass
of the cluster of N reptons is

D =(z —1)a /z Nr +O(N ), (9)
where a is the lattice spacing (average cell size) and r

is the average microscopic time between attempted hops.
Note that the relative correction from the second term of
Eq. (9) can be smaller than that of Eq. (8) because of
correlations between steps. The one-dimensional diff'u-

sion coefficient of the repton model [Eq. (9)] corresponds
to the curvilinear diff'usion coeScient of a polymer in a
tube. If we assume Gaussian random walk configuration
of a chain, the three-dimensional diA'usion coefticient is
D3D=D/N, and the experimentally observed result [Eq.
(1)] is asymptotically recovered.
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In Fig. 2, the numerically calculated diA'usion coef-
ficients of the repton model for z =2, 6, and 12 are com-
pared with the asymptotic expression D, (N) =(z —l )a /
(z Nr ). The asymptotic behavior is reached relative-

ly quickly (between N=30 and 50 reptons). Equation
(9) suggests a more negative elTective exponent D
—N ' for smaller N, but in order to describe
correctly the behavior of shorter chains, one has to in-

clude higher-frequency modes neglected by the repton
model. This crossover region from entangled to disen-
tangled polymers (small N) is beyond the scope of the
present Letter.

Consider the stress-relaxation behavior of the repton
model. If a step strain is imposed on a system of an
unattached chain in an array of fixed obstacles, such as
an ideal network, the resulting stress decays as the chain
reptates into an undeformed configuration. The cells of
the network that sustain stress are the ones that have not
been vacated by the chain since the time of the step
strain.

Let us model this relaxation process by following the
rates at which a cluster of reptons vacates initially occu-
pied sites. Assume that step strain was imposed at time
r =0. Denote by x~(t) the leftmost propagation of the
right end of the cluster between initial time and t. Simi-
larly, let xL(r) be the rightmost propagation of the left
end of the cluster. Then those and only those sites x; of
the lattice that satisfy xl. (t) ~ x; ~ xR(t) have been
continuously occupied between time 0 and t. The stress

is proportional to the number of these sites,

p(r) =(L) '(xR(r) —xL(r)+l), (lo)

where the units are chosen to set plateau modulus
Go=1. An analytical expression for p(t) for N ) 2 is
still an open question. The numerically calculated values
of go for z =2, 6, and 12 are presented in Fig. 3. The
straight lines are the best fits to the viscosities for larger
N. The slopes of these lines on the doubly logarithmic
scale are 3.22 for z =2, 3.36 for z=6, and 3.52 for
z =12.

The case with two gates per cell (z =2) corresponds to
a polymer confined to a one-dimensional pipe. In the
case of z =6, the obstacles form either a two-dimensional
triagonal lattice or a three-dimensional cubic lattice.
The case z =6 also corresponds to the average coordina-
tion number of 3D random packing of spheres, ' while
z =12 is closer to the highest coordination numbers ob-
served in random systems. ' The average number z of
gates per entanglement net cell in most experimental

where the angular brackets denote the ensemble average
and the normalization factor l j(L) is chosen so that
p(0) = l. [See Eq. (6) for the value of the average clus-
ter size (L).]

Zero-shear-rate viscosity is equal to the integral of
the stress-relaxation function:

f
qp=g p(r) dr,

1 'I T I I I

IQ

IQ 2
IO

IO
2

IO

IO I 0' IO

0—
IO

IOO

, I

101 102

FIG. 2. Diftusion coefficient of the center of mass of the
cluster of 1V reptons along the contour of the tube as a function
of N for three difterent average coordination numbers of the
entanglement net, z =2, 6, and 12. Straight lines correspond to
the asymptotic behavior D, (1V) =(z —1)az/(z3Nr ).

FIG. 3. Repton-model predictions of the viscosity go as a
function of cluster size N. Straight lines are best fits of the
higher-N parts of the plot. Their slopes are 3.22 for coordina-
tion number z =2, 3.36 for z=6, and 3.52 for z =12.
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systems is close to 6, and therefore the repton model
predicts an effective exponent go —M —', while D
—M +O(M ) for those systems.

From diffusion coefficients D, and average cluster
sizes, one estimates the time it takes the cluster to diffuse
its own length, r, =(L) /D, =z(z —1)N r . The pre-
factor z(z —1) quantitatively explains the vertical shift
between the viscosity curves for different z (Fig. 3) and
suggests that asymptotically go —i, as N

In the proposed model there are no interactions be-
tween reptons occupying the same site. The probability
of an unentangled loop decreases exponentially with the
size of this loop. ' ' The algebraic prefactor of this
dependence introduces weak interaction between reptons
occupying the same site, and could be included in a more
elaborate version of the model.

The above demonstrates that a simple model of
single-chain dynamics can exhibit nontrivial crossover
behavior in the experimentally relevant range of molecu-
lar weights. The many chain effects, such as constraint
release, may modify' the molecular-weight dependence,
but the origin of the phenomena is in the single-chain dy-
namics.

The results of the repton model qualitatively agree
with the conclusions of Doi, but represent a more ac-
curate treatment of tube-length fluctuations and are in

better agreement with experiments ' ' at intermediate
molecular weights, where Doi's expression [Eq. (3)]
overpredicts the curvature. The two models probably
coincide in the high- molecular-weight region where
M ' expansion used by Doi is accurate, but this region
is currently inaccessible both experimentally and numeri-
cally.
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