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Self-Induced Spatial Disorder in a Nonlinear Optical System
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An optical ring cavity containing distributed nonlinear elements is proposed as a promising candidate
for investigation of the dynamic stability of spatial disorder in a system far from thermal equilibrium. If
the interaction between the elements is unidirectional, the stability of disordered structure can be deter-
mined by the spatial Lyapunov exponent. This fact implies that spatial disorder is frozen under quite re-
stricted conditions, and most of the spatially disordered structure is replaced by spatiotemporal chaos.
However, in the case of a bidirectional interaction, the spatial disorder is self-induced over a wide range
of the control parameter.
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It has recently been recognized that many temporally
irregular phenomena consist of nothing more than the in-

trinsic chaos inherent in the rules of their evolutionary
processes. The question then arises as to whether it is

possible to understand spatially irregular structures in

terms of the intrinsic chaos inherent in the rule which
determines their spatial arrangements. This concept is

appealing. In fact, complicated structures which are typ-
ical of the commensurate-incommensurate phase transi-
tion in equilibrium systems have been elucidated in

terms of dynamical theory based on this idea. ' In equi-
librium systems, however, the spatial chaos derived from
the rule of spatial arrangement is unlikely to be a true
ground state and is more probably a thermodynamically
metastable state. ' If so, the possibility arises that spatial
disorder might be more easily realized in systems far
from thermal equilibrium such as when energy is inject-
ed from the outside. Moreover, in macroscopic non-
equilibrium systems, the dynamical stability rather than
thermal stability of spatial structures is essential. It is

well known that spatial periodic structures can be stabi-
lized dynamically in nonequilibrium systems (dissipative
structures). Spatiotemporal randomness (chaos) has
been found to take place in such systems as the injected
energy increases. These results appear to provide impli-
cit support for the existence of spatial chaos in nonequi-
librium systems. On the other hand, another possibility
exists in which spatial chaos is dynamically unstable and
resolves itself into spatiotemporal behavior. In any case,
the dynamical stability of spatial disorder remains un-
known at present.

The possibility of the existence of spatial disorder
(chaos) has been predicted in a nonlinear optical system,
which is a typical example of nonequilibrium physical
systems. However, the dynamical stability of such spa-
tial disorders, which is the essential problem, is not clear-
ly understood. In this Letter, we introduce a simple

dynamical system which can easily be realized with col-
lective nonlinear optical elements. The distinct feature
of this model is that the stationary solutions imply spa-
tial chaotic solutions within certain limits. Using the
proposed model, we investigate the following issues: (l)
Is the spatial disorder stable? (2) If so, is the spatial
disorder accessible by a physical manipulation? (3) If
spatial disorder is not stable what phenomena take
place? We will show that spatial disorder exists quite
stably over a comparatively wide range of the control pa-
rameter and that it can be easily realized within certain
limits.

The conceptual model is shown in Fig. l. In the mod-

FIG. 1. Conceptual model of an optical bistable system with
distributed nonlinear elements.
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el, nonlinear elements possessing a third-order susceptibility are arranged in a looped optical ring cavity. These ele-
ments interact via counterpropagating light beams which are introduced through the mirrors separating the elements.
For the sake of simplicity, we will first examine the unidirectional excitation case, that is AF =8 and Az =0.

The dynamics is described by the following coupled difference-diff'erential equations:

Ek + i (r ) =2 +BEk (t —L/c )exp[i [pk (r ) + etio]], E~+ i
=E i,.

rr?ik (r ) = —
pk (t ) +

~
Ek (1 —L/c ) ~, p~+ i

=
i?i i, Ii: = 1,2, 3,. . . N (2)

Here, pk is the phase shift which is introduced into the
field when it passes across the kth element, po is the
linear phase shift, 8 =JT is the coupling coefIicient be-
tween adjacent cells (T is the mirror transmittance), L is
the cell length, c is the velocity of light, and i is the
medium response time. In addition, we assume a lossless
medium. Generalization to a lossy medium is straight-
forward.

Within the limit of large dissipation, i.e. , 8«1 and
8 8=1, and by elimination of E~ adiabatically, Eqs.
(1)-(2) can be simplified as

rOk+ i «) = uk+ i
«—)+fA(ek), e~+ i =0 i,

fA(rtr) =A [I+28cos(p+po)].
(3)

It is apparent that these solutions are "chaotic" if the
parameter 2A 8 is made sufficiently large. Therefore,
stationary solutions of Eq. (3) are likely to exhibit spa-
tial disorder. However, the most important point is the
dynamical stability of Ipk].

First, let us carry out the linear-stability analysis.
This is quite straightforward. Given a small initial devi-
ation, the growth rate of the deviation from the station-
ary solution 8&=exp(kt) can be expressed in terms of
the following characteristic equation:

(k+ 1) =exp(Na)sgnrT,

where

(5)

H fA (pk ), a = (1/N ) g ln I fA (pk ) I

Thus Eq. (5) tells us that the dynamical stability of spa-
tial structure [pk], which is evaluated by the sign of the
real component of N k's, is closely related to the stability
of the map pk+ i =fA (pk) through the "spatial" Lyapu-
nov exponent e. From the above analysis, it is easy to
show the following result. If the spatial structure pk ls
the stable solution of the map itrk+i =fA(pk), i.e., a &0
for N )& 1, every X has a negative real component and the
spatial structure is stable.

Stable solutions of the mapping rule itik+i =fA(pk)
(a &0) can be classified into two classes. One implies

Here, we assume a very thin medium [r/(L/c) )) 1] and
neglect the delay time.

The stationary solution, pk, of Eq. (3) is determined
by the simple mapping rule

6+ i =fA (6 ), 6 + i
=

it i.

the period-one cycle solution connected to the trivial
solution of pk =0 as 2 0 and 1 X2' cycle solutions
period doubled from the period-one cycle solution. This
sequence is referred to as S(1). The other class of solu-
tion consists of period-N and period-p cycle solutions (p
any integer ~1,N) which appear via tangential bifurca-
tion, and px2" cycle solutions period doubled from the
period-p cycle solutions. This sequence is referred to as
S(p). In general, period-q cycle solutions (q a divisor of
N ) which satisfy the boundary condition can exist as
stable spatial structures. Results of the simplistic case
where N =2'X3 are shown in Fig. 2(a), where it is as-
sumed that 8=0.1 and go=0. Spatial period doubling
initially takes place as A increases and the period-two
structure is frozen in this case. Is the S(p) structure
realized as A increases up to the stable domain of S(p)'?
This is not the case and dynamical instability, which
leads to spatiotemporal chaos (STC) when N)) 1, devel-
ops instead. This is because S(p) solutions, including
the unstable regions, form closed loops (isolas) and these
are isolated from other isolas as well as from S(1) [see
Fig. 2(a)]. In addition, their stable regions localize at
the edges of isolas where the tangential bifurcation takes
place. Therefore, the STC connected with S(1) can
coexist with S(p). As p increases, the stable regions of
S(p) decrease exponentially. Accordingly, the basin of
attraction of S(p) decreases exponentially and becomes
narrower than that of STC. This means that one has to
set the initial conditions sufficiently close to S(p) pat-
terns in order to realize these patterns. Otherwise, the
STC which connects with S(l ) is realized instead. How-
ever, STC is loosely related to S(p). In short, when 2
exceeds the narrow S(p) stable region, the motion of
STC in phase space is attracted by the unstable branches
of isolas on which S(p) lies and the system tends to
wander around these unstable branches as shown in Fig.
2(b). This indicates that S(p) structures can be realized
transiently although they cannot be frozen stably.

In the unidirectional excitation discussed so far, the
information fIow is restricted to one direction. When one
introduces counterpropagating beams Az into the sys-
tem, the dynamics is dramatically changed. The govern-
ing equation is modified as"

~F or B ~F or B+f (~F ) +f (~B )

under the same conditions as the unidirectional case.
Here, the eAect of nonlinear refractive index grating is
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constructed, which are spread over the basin of attrac-
tions of coexisting N cycle structures. This might sug-
gest that STC is interpreted as a "heteroclinic trajecto-
ry" which dynamically connects destabilized spatial
chaotic structures.

In any event, the study of the relationship between
STC and the large number of coexisting frozen random
patterns may provide an important clue for the under-
standing of turbulence phenomena. This subject is now
under investigation.

Finally, it should be pointed out that the proposed sys-
tem possesses interesting features with respect to practi-
cal application, as well as the academic aspects discussed
in this Letter. In fact, novel cooperative functions such
as flip flops and assignment to spatial patterns in hys-
teretic regions are proved to be realizable by modulation
of only a few cells in the case of unidirectional interac-
tion. '' A variety of coexisting patterns observed in bi-
directional interaction serve as the basis for a novel opti-
cal memory device which stores complicated input infor-
mation as spatial patterns.

One of the authors (K.I.) is very grateful to T. Sasada
for his stimulating discussions.
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FIG. 4. An example of frozen disordered patterns which is

self-induced by an increase of P to 6, where N =200 and r = l.
(a) Self-induced spatial disorder, (b) spatial return map.

disordered structures and the corresponding "spatial' re-
turn map are shown in Fig. 4. The spatial displacement
of pk seems to have an almost period-two cycle structure
into which "holes" like intermittent bursts are inserted.
The return map suggests that such holes are due to
homoclinic orbits originating from a period-two fixed
point. Indeed, period-two cycle solutions are proved to
be absolutely stabilized as a result of the local feedback
for counterpropagating fields. Moreover, the "hole"
structure in Fig. 4 can also be shown to be a homoclinic
orbit which is asymptotic to the period-two cycle solu-
tion.

As for large N, an extremely large variety of ¹ ycle
spatial structures is expected to exist. Indeed, various
heteroclinic structures, which connect different period-
two cycle solutions, have been found to be frozen in addi-
tion to the homoclinic structures at high P regions near
STC. This indicates that STC strange attractors are
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