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We analyze the stationary nonequilibriurn state of a spin system evolving under combined flips at tem-
perature P and exchanges at P=0. Computer simulations indicate that the phase transition changes,
as the exchange rate I increases, from second to first order. We interpret this as a changeover from Is-
ing behavior for small I to mean-field behavior for I ~ where the magnetization is discontinuous in

the "continuum limit. "
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Consider an Ising spin system (equivalently a lattice
gas) on a simple cubic lattice in d dimensions with
configurations o = fcr(x);x E Z, cr(x) = ~ 1I. The sys-
tem evolves by a combination of spin flips (Glauber) '

and nearest-neighbor exchanges (Kawasaki). The two
processes occur independently in continuous time.

For a given o, let c(x;cr) be the Glauber flip rate at
site x and E(x,y;o) the Kawasaki exchange rate for a
pair of neighboring sites x and y. Choosing a suitable
time unit, we let E(x,y;cr) =I be independent of o and
make c(x;o) satisfy detailed balance,

c(x;o)t'c(x;o ) =exp[ —P[U(cr ) —U(cr)]1.

Here a"" represents the configuration obtained from a. by
flipping the spin at site x and U(o) is an energy function
which we take to be of nearest-neighbor type,

U(cr) = —J g c (x)cr(y)
(x,y)

(2)

A way of describing the dynamics is to say that the ex-
changes occur as if the system was in contact with a heat
bath at infinite temperature, P =0, and the spin flips as if
the bath temperature was p

Our interest here is in the nature of the stationary
states, p„(o), for some familiar rates c(x;o), i.e. , the
phase diagram of this nonequilibrium system as the pa-
rameters P and I are varied. This problem has also been
studied by Dickman using a Bethe-type approximation.
His results are in qualitative agreement with our findings
(see below).

There are several remarks to be made: (i) For I =0
the stationary states do not depend on the details of c, as
long as (1) holds. They are equilibrium states for U(o)
whose nature is well known. In particular there is, for
d ~ 2, a second-order phase transition at a critical P =P,
such that there is a unique state for p ~ p, and spon-
taneous magnetization for P&P, . (ii) For c(x;o) =0
the stationary states are of Bernoulli type, i.e. , there is no

clm(r, t)/r)t = —, V m(r, t)+F(m(r, t)), (3)

where F(m) is a polynomial in m,

F(m) = —2(cr(x)c(x;o)) (4)

the average being taken in a Bernoulli state with uniform
magnetization m. The basic idea of the proof in Refs.
4-6 is that, as I ~, the fast exchanges bring the sys-
tem to "local equilibrium" with magnetization m(r, t) at
"infinite temperature, " the temperature of the Kawasaki
dynamics, where there are no correlations. The time
evolution of the local magnetization is then governed by
the macroscopic difusion-reaction equation with coef-
ficients evaluated in the local equilibrium ensemble.

We shall now present the form of F(m) for several
different c(x;cr) and the corresponding time-independent
spatially homogeneous solutions of (3), i.e. , values of m

for which F(m) =0. This is relevant for understanding
the nature of the phase diagram in the P, I plane which
is our main concern here.

correlation between sites. There are an infinite number
of such states, one for each magnetization m =(o.(x)).
This is a result of the fact that the magnetization is con-
served by the exchanges. (iii) For the interesting case
where I, c, and p are all positive, the stationary state,
which will now depend on details of c(x;o'), is not (as far
as we know) an equilibrium state for any reasonable po-
tential and its properties are not known. In particular,
we do not even know if the stationary state is unique or
not, i.e. , if there is a phase transition (in the infinite-
volume limit) in any dimension, including d = l.

Models of combined Glauber and Kawasaki dynamics
have been investigated previously in the limit I

More precisely, on rescaling of time by I and space by
JI it was shown in Ref. 5 that, in the limit I ~, the
macroscopic magnetization m(r, t) satisfies a diflusion-
reaction equation of the form
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Case 1: The rates originally introduced by Glauber, '

1
d

c (x;cr ) =—g g [ I + —,
' s y [cr(x + e; ) + cr (x —e; ) ] j [1 —s cr (x )],

2 s= ~ 1
i=]

where y=tanh2PJ. This yields

F~(m) = —4[(1 —my) (1+m) —(1+my) (1 —m)] =mf~(m ), f~(X) = —8[ap+a~X+. . . +akX ],
with ap =2(1 —dy), a

~
=d(d —1) y [1 —

—,
' (d —2) y], and 2k =d for d even and d —

1 for d odd.
Case 2: The familiar Metropolis rates

c (x;cr) =min [I,exp [ —Pd U]].

(6)

(7)

The corresponding Fq(m) can again be written as mf2(m ) with f now a polynomial of order d. In particular for d =1
and 2 the Metropolis rates give

f (X) = —,
' [(3y —I)+(y —1)k], d=l,

f2(k) =const[(5y +12y —1)+2(y —1)(5y+ I)X+(y —1)(y —3)X ], d=2,

where y=exp[ —4PJ].
Case 3: The form of c(x;cr) used in Refs. 4-6 for studying a one-dimensional example,

c(x;cr) = 1
—ycr(x) [cr(x —1)+cr(x+ 1)]+y cr(x —1)cr(x+ 1).

This gives
F(m) =2m[(1 —2y)+ y m ], d =1,

(9)

(10)

y =tanh2PJ =d (12)

with y=tanhPJ.
The time-independent uniform magnetization solu-

tions of (3) correspond to real roots of the polynomial
F(m) with m ~ 1. It can be checked that for the mod-
els considered here, where F(m) =mf(m ), there is only
one such root, m =0, for small positive PJ. Other roots,
corresponding to f(m ) =0, with m ~ 1, m = ~ m*,
will appear when P is larger than some P (with J= 1).
The solution of (3), m(r, t) =0, is stable for P & P, and
unstable for P & P ~ P where the symmetry-breaking
solutions m (r, t) = + m* are stable.

The nature of the change at P =P will depend on how
the admissible root of the polynomial f4, ) appears at
P=P, i.e. , on whether k(P) is equal to or greater than
zero. In the case X(P) =0, P=P, the "transition" is

second order with m*(P)=(P —P)'t for P=P while in

the other case there is a first-order transition with a
jump in the spontaneous magnetization equal to QX(P).
In terms of the mean-field-type free-energy function,
which serves as the potential for the reaction term in (3),

e(m ') = — F(z )dz,dp

both types of behavior are well known: The first case is
standard; in the second case, which occurs for four-body
interactions, +(X) develops a new local minimum at
k(p) which becomes a global minimum at P =P & P lo-
cated at X(P). At a still larger P, the minimum at X =0
may become unstable (other behavior is also possible).

For case 1, Eq. (6), P =P, X(P) =0; P corresponds to
the value of P for which ap =0,

For Metropolis rates in d =2, Eq. (8), P=—0.515
=1.17P„and P=0.474=1.08P, ; P, is the Onsager
value of the critical p at I =0. The jump in the spon-
taneous magnetization at P is equal to 0.925.

In d =1, rates 1 and 2 give P=~ while rate 3 gives
tanhP= —,

' with m*(P) =0. It is also easy to construct
dynamics, e.g. , Metropolis with next-nearest-neighbor
interactions, which give P & ~, m*(P) & 0 in d = l.
This shows the importance of the choice of c(x;a), at
least in the I ~ continuum limit.

The behavior for I & ~ cannot be deduced from the
above considerations. We expect that in all cases the
one-dimensional system will not have a phase transition
for 0 &P, I & ~. In more dimensions, however, where
there is a transition even for I =0, we expect that

P= lim Pp(I )
oo

where Pp(I ) is the transition point at fixed I .

We have investigated salient features of the stationary
state in d=1 and 2 at diflerent values of P and I via
computer simulations: A site x is chosen at random
from a given (finite) lattice; then with probability p,
0 ~ p ~ 1, the spin at x is exchanged with one of its 2d
neighbors (picked at random) and with probability
(1 —p)min[1, exp( —PhU)] is flipped. Periodic bound-
ary conditions are used. Our procedure corresponds,
after normalization of time units (which are irrelevant
for the stationary state), to case 2 with I =p/d(1 —p).

In d =1 we used chains of size 2500 and considered
both nearest- and next-nearest-neighbor interactions
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FIG. 1. The system energy, as a function of P (in units of
the Onsager critical value P, =0.440J '), for a two-dimen-
sional system with ferromagnet Metropolis rates with difI'erent

values of p. The solid line represents p =0, i.e., equilibrium for
the infinite system. The symbols are for p =0.10 (squares),
0.60 (inverted triangles), 0, 80 (triangles), 0.85 (lozenges), and
0.95 (circles); the dashed lines are guides to the eye.

—the latter (but not the former) giving a transition in

the continuum I ~ limit. As expected, the simula-
tions carried out for p (0.96 (I =26) gave no transi-
tion.

In d =2 we considered only nearest-neighbor interac-
tions and carried out simulations on squares of different
sizes, N ~ 10 sites. Figures 1 and 2 give the behavior of
the energy (nearest-neighbor correlation) and of the
magnetization as a function of P for several values of p.
These figures show how increasing p from 0 (which cor-
responds to the familiar equilibrium state of the Ising
model) modifies the transition; while Po(p) increases
with p, the qualitative behavior remains the same as for
the Onsager solution up to p =0.80 or I =2. In partic-
ular, the phase transition apparently remains second or-
der for all p & 0.80, and the data near Po are "con-
sistent" with the corresponding critical exponents being
0.125 and 1.75, independent of p. This is in agreement
with renormalization-group calculations and is also con-
sistent with our data for the "specific heat" C and "mag-
netic susceptibility" X computed by measuring fluctua-
tions. (The relation of these fluctuations to derivatives of
the energy and magnetization is unknown for the non-
equilibrium states considered here. )

The situation for p &0.85 is qualitatively very dif-
ferent. We now observe the appearance of some well-
defined metastable states during the system evolution
and Figs. 1 and 2 suggest discontinuities at the transition
temperature Po(p) —both facts indicating that the phase
transition is first order for p & 0.85. This is also
confirmed by the fluctuation data: The symmetry
around Po which characterizes C for p =0 (and for
p & 0.80 as well) is now absent, I becomes even more
asymmetric than before, and both C(P) and X(P) sug-
gest a finite jump in the nearest-neighbor correlation and
the magnetization at Po(p).

Figure 3 shows the phase diagram with a (nonequi-
librium) tricritical point, whose location we estimate at

FIG. 2. The system magnetization as a function of P. Same
system and symbols as in Fig. l.

lim Po(I ) =P.
oo

Finally, we note that recent computations on a two-
dimensional system using the flip rates given in (5)
showed no changeover to a first-order transition lending
support to our analysis.
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FIG. 3. The transition temperature Po(p) for the same sys-
tem. The solid line represents a line of critical points for

p (p, =0.83; the dotted line for p & p& corresponds to first-
order phase transitions, Po(p, ) =0.47J

p, =0.83, corresponding to the changeover from second
to first order. As p p„ it becomes more di%cult to es-
timate the values of the critical exponents.

Our machine computations may be compared with the
Bethe-type approximations of Dickman for the same
model. The results for the phase diagram agree qualita-
tively; p, =0.72 in Dickman's approximation and the ex-
ponents are always mean field. In the limit p 1

Dickman's approximation gives the correct result.
For a comparison between our machine computations

and the continuum limit, we note that Po(p) =0.47, 0.48,
and 0.49, respectively, for p =0.80, 0.85, and 0.95, while

P computed following Eq. (12) is 0.515. This suggests
that in fact
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