
VOLUME 59, NUMBER 17 PHYSICAL REVIEW LETTERS 26 OCTOBER 1987

Vortex-Ring Model of the Superfluid A, Transition
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An initial model of the superfluid k transition is constructed with use of vortex-ring excitations, as
originally suggested by Onsager and Feynman. A real-space renormalization technique generates a
screened vortex energy and core size, and gives rise to a transition where rings of infinite diameter are
excited as the superfluid density approaches zero at T, . Although the model satisfies the Josephson
hyperscaling relation, it is not yet a complete theory: The superfluid density exponent is v=0.53, and
does not match the known value v =0.67.

PACS numbers: 67.40.Kh, 64.60.—i, 67.40.Db, 67.40.Vs

The superfluid transition of liquid He has been stud-
ied intensively for nearly SO years. In spite of this, there
is still little known about the underlying physical mecha-
nism. Onsager and Feyn man

' proposed in their original
papers that vortex excitations might be responsible for
the transition. Since then many authors have reiterated
this proposal, and at least a partial listing of these papers
is given in the references of Kotsubo and Williams. The
key role of vortex-ring excitations, in particular, was em-
phasized by Popov, Wiegel, Banks, Myerson, and Ko-
gut, ' ar d Nelson and Toner. These papers gave a qual-
itative and physical picture of the transition, but quanti-
tative predictions remained elusive. On the other hand,
perturbation-series techniques such as the high-tem-
perature expansion and the 4 —

t.. expansion proved to be
successful in the calculation of the critical exponents of
the transition. However, these are formal and math-
ematical procedures that are hard to apply in many situ-
ations, and the momentum-space representation that is

used makes it di%cult to identify the excitations causing
the fluctuations.

The role of vortices in the superfluid transition has re-
cently been made much more concrete by the numerical
results of Kohring, Shrock, and Wills, who used a
Monte Carlo simulation of the three-dimensional (3D)
XY model to give strong evidence that vortices play a
crucial part in the transition. Vortices had previously
only been known to be important in two dimensions
(2D), as shown theoretically by Kosterlitz and Thou-
less' and as confirmed by experiments in thin helium
films. '' The question of how the transition evolves as
one goes from 2D to 3D geometries has recently arisen in

experiments on helium films adsorbed in packed pow-
ders. The results there led to speculation that the na-
ture of the transition did not seem to change much as
one varied the film thickness to the point where the
powder pores fill completely with helium. The finite-size
2D transition appears to merge smoothly with the finite-
size 3D transition, with little sign that the vortices cease
to play a role in the 3D case. This conclusion has now
been corroborated by the Monte Carlo results.

In this Letter the superfluid density is calculated near
the transition by consideration of the screening eAects of
circular vortex rings on an applied superflow. The start-
ing point is to realize that vortex rings are eigenfunctions
of the Landau-Ginzburg- Wilson Hamiltonian. ' The
"bare" energy of a circular ring of radius R is given by
(in dimensionless units, normalized by kaT)

UO=2tr (6 /m4)(p, /kaT)RI[ln(R/a)+C]+. . . I,

6 p.
3 m4 kBT

(2)

For finite R the first correction to this is of order
(a 2/R ~) [ln(R/a)]

The number of rings per unit volume thermally excited
at a given point, with radius between R and R+dR, tak-
ing the minimum diameter to be 2ao and counting the

where m4 is the He atom mass, p, is the bare superfluid
density, and C is a constant related to the core energy;
the calculation of Roberts and Grant' gives C=0.464.
The core radius a is related to the superfluid density and
the p coupling constant Vo by a =(6 /2Vop, )'l . The
higher-order terms in the expression for Uo are functions
only of a/R, and vanish in the limit R ~. The first
correction term for the classical vortex ring is of order"
(a /R ) ln(R/a), and a similar form is thought to hold
for the Landau-Ginzburg-Wilson rings, ' although only
a numerical evaluation' is available for that case.

A magnetostatic analogy can be exploited to regard
the ring as a dipole current loop, ' ' having a dipole mo-
ment m and an impulse p. For a large ring (R ~),
p =4trp, m, and m =trhR /2m4. In a flow field v„ the
ring energy is lowered to U'=Uo —

p v„and following
Kosterlitz and Thouless, ' the polarizability of a large
ring is

fo dOm cosOsinOexp(pt, cosO/k aT)
fo dOsinOexp(pt, cosO/kBT)
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superfluid density. It is useful to express this screened
density in dimensionless form by defining K„=(h /m4)
x(p, ap/kaT) and K=K„p,/p„and the permeability is

then given by

ways of orienting a loop, is

(3)dn(R) = [4+R dR/(2ap) ]e

(4)

The length-dependent susceptibility is then X =j,,a
x dn (R ). An applied flow will be screened by the K/K p/
current resulting from the oriented dipoles, reducing the

yielding for the observable superfluid density (R ~)
1 1 +)" dR R
K„K 'o ap ap

II'

exp —2z K ln —+cR R
ap a j

with A =ms/12, and where for the time being we neglect the correction terms in the vortex energy and polarizability. It
is convenient in what follows to define two further scaling variables y and g by the relations g=(2apm4kaT/A ) Vp
=ap/ka (where g is the dimensionless coupling constant) and y =exp[ —2' K(lndgK+C)]. Equation (5) can then
be written as

1 1
I

dR R
K, K " o ap ap

' 6

y exp —2z' K ln
R/ap 2 R R

ap ap
(6)

To make this expression self-consistent, it is necessary to replace K in the vortex energy of the exponential with the
screened value K,. ' At low temperatures the integral is small, and the exponential can be expanded in powers of the
integral. Equation (6) is then the first two terms of a perturbation expansion of 1/K, .

At high temperature near the phase transition where K„O, the integral becomes divergent, and the perturbation
series breaks down. To evaluate Eq. (6) in this regime I use the vortex-core rescaling technique of Jose et al 'The in.-

tegral is divided into two parts: The first part ranges over the small interval from ap to hap, with b —1=-lnb((1, and
the second part from bao to ~. Changing variables in the second part R bR results in

1 1=—+Ay lnb+g Ab
K, K ap ap

y 'exp —2z 2Kb ln
bR/ao 2 R Rb

ao ao
(7)

1/K'= (1/b) [(1/K)+Ay lnb],

b —2n 2Kb 1nb

(ga)

~ =~b'

K,' =bK„,

(gc)

(sd)

However, in this increase of scale size we require that
Eq. (7) have the same functional form as (6). This is

accomplished by our defining new variables at the in-
creased scale,

where y has been redefined to absorb the variation of 4,
e 'y y, and where Ap =sr /12, yp=exp( —2' KpC),
and gp= I/Kp, with Kp being the initial value of K at the
scale size ap. Equation (9d) explicitly shows that this
model satisfies the 3osephson hyperscaling relation, '" i.e.,
that the specific-heat exponent e and the superfluid-
density exponent v are related by v=(2 —a)/3. Since,
for T ( T„ the parameter y(l ) 0 as 1 ~, the ob-
servable superfluid density is obtained from Eq. (9d),

B(I/K) ++oy
Bl

By/Bl = [6 —2z K(ln JgK+ C+1)]y,

(9a)

(9b)

where higher-order terms in y have been neglected. The
scaling of g is determined by our taking into account the
higher-order correction terms of Eqs. (1) and (2); since
they are only a function of a/R, g has to transform as

g '=bg.
By successive repetition of this transformation, the

scaling relations can be put in diAerential form, ' ' if we
set dl =lnb,

K„(Kp,yp, gp) = lim K„(K(l),y(l), g(1) )e/~ oo

= lim K(l)e
(10)

Equations (9a)-(9d) have a simple physical interpre-
tation in terms of a vortex-ring energy which is screened
by rings of smaller size. Integration of Eqs. (9a) and
(9b) to a finite length 1 and setting 1=in(R/ap) and
K, =Ke ' yields an integral equation for K, similar to
Eq. (5),

g =gpe I

K„(K(l),y(1),g(l)) =K„(Kp,yp, gp)e,

(9c)

(9d)
1

K„
1 + I' dR R

p~aKp J ap a o a p

' 6

e
—U(R)
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except that now U(R) is a screened energy,

t
R

U(R) =2m K, ln +C+16ao ' a ap

pR
dR." 'o p BR

(12)
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FIG. 1. Superfluid density near T„plotted as p, /p,
(=K,/Kp) vs TlT, (=Kp, lKp), calculated with Eqs. (9). The
solid curve is the result of iteration to R/ap ~, while the
dashed curve is a finite-size case of limiting the iteration to
Rlap =10.

The original energy Up is reduced by the scale-dependent
permeability in the same manner as in the original argu-
ments of Kosterlitz and Thouless. ' The parameter
a, =ao(Kp/K, ) '/ can be interpreted as an effective core
radius which increases as the transition is approached.
The "real" core size is still ap, one can probably think of
the core of a large ring as a region of increased density
of rings of smaller size, each of whose core, in turn, is

composed of still smaller rings. This scale-dependent
effective core size differs from a conjecture by Nelson
and Toner that the core size could exceed the ring di-
ameter, making the ring indistinguishable from a fluc-
tuating "blob" of normal fluid. That does not occur in

the present model because the eA'ective core is made up
only of rings of smaller size.

The renormalized superfluid density K, can be calcu-
lated numerically from either Eq. (9) or Eq. (11) with
standard recursion techniques. The model yields a
power-law phase transition where K, drops to zero as
K„=(Kp —Ko, ) ", with fits giving Ko, =0.24846 and
v=0.526. ' The solid curve in Fig. 1 shows this behav-
ior, plotted in the form of p, /p, vs T/T, . As T, is ap-
proached it becomes necessary to carry the iterations to
increasingly large values of R before p, stops changing.
The critical point p, =0 corresponds to the excitation of
rings of infinite diameter, made possible by the

screening effects. The correlation length,

g
= lim ap/K„=m4kaT/6 p„/~ oo

is basically the diameter of the largest ring appreciably
excited at a given value of T —T, .

The real-space nature of this model makes the treat-
ment of finite-size effects particularly simple, requiring
only a cutofI of the recursion relations at the finite scale.
The dashed curve in Fig. 1 shows the eflect of limiting
the maximum ring size to R/an=10. This characteristic
finite-size "tail" has been observed in experiments with
He in confined geometries. '

The form of the recursion relations of Eqs. (9) is quite
similar to the 2+a expansion of Fisher and Nelson,
also derived from a basis of interacting vortices. The
flow diagram for y vs 1/K is very similar to their Fig. 4,
although the fixed-point values are diA'erent. The addi-
tional terms in Eq. (9b) such as 1nv gK which appear in

our model would be higher order in |. in their expansion
and hence neglected. It is just these terms which give
rise to the eAective core-size variation in the 3D case
(a= 1), and it is also these terms which increase the
value of the superfluid exponent v above the result
v =0.50 of the 2+ t. calculation.

The fact that the superfluid-density exponent in the
above calculation does not match the known value
v=0.67 is certainly an indication that the model is not a
complete description of the transition. The use of strictly
circular rings is a major simplifying assumption that al-
lows the relatively uncomplicated form of Eq. (5). The
superposition of a thermal distribution of circular rings
generates a mass of tangled vorticity, but this is still not
completely equivalent to the more realistic case of dis-
torted, noncircular rings. ' It should be remarked that
the derivation of Eq. (5) is quite phenomenological, fol-
lowing the original method of Kosterlitz and Thouless,
and more rigorous approaches to it are needed.

A scenario of the superfluid k transition can be postu-
lated, based on this model and the Monte Carlo simula-
tions. At low temperatures rings are energetically un-
favorable [Eq. (1)] because the superfiuid density is

large. The phonons and rotons are the dominant excita-
tions, giving rise to the temperature-dependent p, ac-
cording to the Landau two-fluid mode. At higher tem-
peratures approaching T&, p, falls to such a small value
that it then becomes favorable to excite rings of radius
larger than ap. These rings lower the superfluid density
to the renormalized value p„which makes it possible to
excite even larger rings, which then further lower p„ex-
citing even larger rings, and so on; this finally results in

p, =0 at T=T&. Vortex excitations, with energy propor-
tional to p„are the only soft modes in liquid helium. It
is the phase fluctuations of the vortices which generate
the amplitude fluctuations [through, e.g. , Eq. (5)] that
drive the order parameter to zero at the transition.

In summary, a vortex-ring model of the superfluid
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transition has been constructed. Screening eAects of the
vortices give rise to a phase transition, as also observed
in the Monte Carlo simulations of the 3D AV model.
The real-space identification of the vortex fluctuations
responsible for the transition should be useful for insight
into other calculations such as finite-size eAects,
boundary-value problems, and the dynamic properties of
the transition.
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