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Wave Localization Characteristics in the Time Domain
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We present an analytical solution to the problem of pulse backscattering from a randomly stratified
half-space. It is shown that the power spectrum p for the backscattered wave is characterized by a func-
tion of I, where X=(distance traveled by the pulse at time r)/(the frequency-dependent localization
length). For the matched-impedance and the total-reflection boundary conditions, p is given by
t/(I +t) 2 and 4X, respectively. Implications for the time-domain measureinent of the localization
length are discussed.

PACS numbers: 42.20.—y, 03.40.Kf, 43.50.+y, 63.50.+x

The phenomenon of wave localization' is usually de-
scribed in terms of the spatial correlation for a single-
frequency wave, where the exponential decay of the wave
envelope is defined as signifying localization. In some re-
cent works, ' however, we have shown that in the time
domain the localization of a pulse exhibits a distinctively
diferent set of characteristics. In particular, results of
numerical simulation indicate that in one dimension, the
nonstationary power spectrum p for the backscattered
pulse amplitude is a function of the variable /=cur/
l(co), where co is the effective-medium speed, r the ob-
servation time, and l(co) the frequency-dependent locali-
zation length. By expressing a generic link between the
multiple-scattering noise and the localization length, the
function p demonstrates a clear manifestation of the lo-
calization phenomenon in the time domain. In this
Letter, we report the first analytical solution to the prob-
lem of pulse reflection from a randomly stratified half-
space that leads to an explicit determination of It(L).
The solution is made possible by our taking the "white-
noise" limit, i.e. , the correlation length 10 of the inhomo-
geneities is assumed to vanish. However, comparison
with numerical simulation data indicates that the analyt-
ical result is valid even when lo is finite and large as
compared to the wavelength. We ofIer a plausible reason
for the robust nature of the solution and discuss implica-
tions for the time-domain measurement of l(co).

Consider a medium which is randomly layered in the
region 0 ~ I ( ~, characterized by spatially varying
density p(x) and bulk modulus It(x), and homogeneous
in the region —~ & x & 0 with p =(p(x))„=po and

' =(It '(x)&,, =Ko '. The equation governing the
propagation of an elastic wave can be written as

0 p(x) p
'(x) 0

where p denotes pressure, v the displacement velocity,
and the overdot denotes time derivative. It should be
noted that the propagation of an electromagnetic wave in
a stratified medium is governed by an equation which is
isomorphic to Eq. (1). Since the problem is linear, the
response of the medium to a pressure pulse is given by

p(r) = (2tr) '
zt dcoexp(icor)f(co)R(co), (2)

where f(co) is the pulse frequency spectrum and R(co)
the reflection coefficient. The statistics of p(r) can be
shown to be Gaussian with mean zero. The proof, which
is somewhat technical, will be given in a more complete
report. s However, given the Gaussian statistics of p(r),
the knowledge of the power spectrum represents a com-
plete solution to the problem.

The power spectrum of the response, N(r, co), to a 6-
function incident pulse [f(co) =1] is related to the time
correlation function of p(r):

(p(r)p(r+t))

=(2tr) ' „dcoexp[ —icot]N(r, co), (3a)

where the angular brackets denote configurational av-
eraging, and the approximate stationarity of p(r), for
small variations in r, is assumed (this is justified by the
final result). From Eq. (2), N(r, co) can be written as

N(r, co) =(2tr) 'JI dh exp( —ihr)u(h, co),
where

(3b)

u (h, co) =(R (co —h/2) R*(co+h/2) ) (3c)

is the correlation function of the reflection coefficient at
two different frequencies, with h denoting the frequency
difIerence. To calculate R and the correlation function
u (h, co), we proceed from Eq. (1) by first writing
p(x) =po[1+p(x)], K '(x) =Ko ' [1+cr(x)), where p
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(cr) denotes the fluctuating part of p (K '), and then
nondimensionalizing all the variables by expressing them
in terms of natural units, i.e., p p/Kp, v c /cp,
x x/lp, and co colp/cp, where cp=(Kp/pp)'i, and lp
is the correlation distance of the inhomogeneities. The
resulting equation in terms of the right- and left-
travelling-wave amplitudes 2 and B, respectively, is

dx B
m

n exp(2icox )

r—n exp( —2icox ) A

(4)

Defining the reflection coefficient R =B/A, we get from
Eq. (4) a Riccati equation for R:

dR/dx =ico[n exp(2icox) —2mR+ nR exp( —2i cox)].

For a finite slab of length L, we have R(L) =0, and Eq.
(5) is to be integrated backward to x =0. As L
the boundary condition at x=L can be determined by
our noting first that

~
R

~

=1 because of the localizing

where we have assumed harmonic time dependence for p
and v, n = —,

'
(p —cr), m = —,

' (p+ cr), and

p = —,
' [A exp(icox)+B exp( —icox)],

v = —,
' [A exp(icox) —Bexp( —icox)].

nature of the random medium, then writing R =exp(iy)
everywhere to obtain a corresponding equation for y:

d y/dx = 2 co [n cos (y —2 cox ) —m ].

Instead of a boundary condition at x =L. we now take
the statistically stationary solution of Eq. (6). In terms
of y, the function u(h, co) can be rewritten as

u(h, co) =(exp[i(yl —y2)])
2K

(7)dyP(y)exp(iy),

where yl corresponds to frequency co —h/2 and yq corre-
sponds to frequency co+h/2, y=yl —yz, and P(y) is

the stationary distribution function for y.
In order to calculate P(y) and u(h, co), we will take

the white-noise limit of lo 0. More precisely, the limit
process involves the introduction of a dimensionless pa-
rameter lpco/cp =—e «1 and specification that lp is on the
order of |. when measured in terms of a macroscale,
which is taken to be 1. Since lpco/cp =a, we get co co/c
so that the wavelength is on the order of cp(co/c)
On the other hand, h is the frequency scale which deter-
mines the correlation and beating between two waves.
Since u(h, co) is nonzero in only a small range Ah/co
—e((1, we require h h under the scaling transforma-
tion. By using Eq. (6) to write one equation for y~ (fre-
quency co —h/2) and another equation for y2 (frequency
coth/2), and by substituting co/e for co and making the
transformation yp = —,

' (yl + y2), y = yl —
y2, we obtain

d l/f co . ~ cg . y= —4—n sin yo
—2—x sin + hx —2h n cos yo

—2—x cos hx+CO Y
dx 8 E

J
2 E 2

—m

~atro co CO Y=2—ncos yo
—2—x cos hx+Jx E 2

E—m + hn sin yo
—2—x sin hx+

2
(8b)

where the superscript e denotes the solution at a given value of c, and the variable dependence of n( /ex), m(x/c ) has
been suppressed. If we assumed that the random material fluctuations are generated by an ergodic Markov process
q'(x) =q(x/c ) in space IR" with an infinitesimal generator Q, then n and m can be written as n(x/e ) =n(q( /xc))
and m(x/e ) =m(q(x/e ) ). The process (q', y, yp) cR + is now jointly Markovian with the infinitesimal generator

I ~+dy' 6 + yp tl

dx tly dx gyp
(9)

where dy'/dx and dyp/dx are given by Eqs. (8). The problem cast in the form of Eqs. (8) and (9) is now amenable to
application of limit theorems of stochastic differential equations. It can be shown that (y', y') converges to a limit
(y, yp) as c 0 which is independent of q. All the information left over from the e scale is captured by the averages
of the second moments of n and m. By straightforward calculation, the limiting infinitesimal generator is found to be

L„=4co (ja + —, a„„[1+cos(y+2hx)]}c) /tIy + a„„[1—cos(y+2hx)] c) /cly'). (10)

Here

a„„=~ &n (0)n (&)&dg,

and similarly for a . Note that the coefficients in Eq.
(10) do not depend on yp, so that y is Markovian by it-
self. That means that P(y) satisfies the Fokker-Planck

equation L*P =0, or

2co a„„(1+z) —h (1+z )P =0,6J' 9'-a, 'a, a, (12)

where we have made the substitution z =cot(y+2hx)/2
in Eq. (10). From Eq. (12) the distribution function P
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can be solved directly by quadrature, and consequently
the function u(h, co) may be written as

u(h, co) =u(y)

1.0

0.8

=yg exp( —&y) dj, y )0,
p (+i (i3)

and u*( —y) =u(y). Here y =hl(co)/cp, and l(co)
=cp(a„„co ) ' is identified as the localization length in

the white-noise limit. Substitution of Eq. (13) into Eq.
(3b) yields, after some elementary integration,

0 ' 6

0.4

0.2

0 ~ 0

cV(z, co) = z 'p(X), (i4a)
0 ' 8

X/(I+Z)', x) 0,
&")='0 Z(0 (14b)

with I=cpz/l(—co). It is noted that u(y) and Z 'p(X)
are Fourier transforms of each other, and p. (Z) satisfies
the sum rule that Z 'p(Z) integrates to 1, which arises
from the requirement that u(0) =1.

Equations (13) and (14) are derived with the assump-
tion that the randomly layered half-space is bordered by
a homogeneous half-space. We can equally well assume
that the random medium interfaces with vacuum, in

which case the backscattered wave will be totally re-
turned into the random medium. If one imposes a pres-
sure pulse on the boundary at i=0 and monitors the
medium response in terms of the displacement velocity,
then the problem is similar in all respects except that
now

3r exp(iy) + 1

1
—r exp(iy)

(is)

m3(x) =„exp(s —x)ml(s)ds,

By using the same P(y) for averaging and Fourier trans-
forming the result, one gets

p(X) =4Z+ ~(X), Z) 0,

where 6'(E) denotes the 6 function, and p(X) =0 for
z(0.

To compare our result with numerical simulation data
which can extend beyond the white-noise limit, we
choose to focus on the quantity u(y) since one can uti-
lize the transfer-matrix technique for its e%cient and
accurate determination. The matched-impedance
boundary condition is imposed. Three different models
of the random medium have been used. In the first one
we consider pp=Kp=l, p=0.9q;(x), and cT=O 9q~(x), .
where q;(x) is a random jump process whose value is
distributed uniformly in the interval [—1,1] and whose
jump interval l follows a probability distribution of
exp( —l). The second model has fixed layer thickness of
1=1,po=8, K0=2, and p=0.05N;, can=0. 4N~, where N;
is a random number with a uniform distribution in

[—1,1]. The third model is obtained from the first model
by the use of an exponential filter for the material pa-
rameters':

0 ' 6

E 0.4
I

0.2~
0 ~ 0—4 ~ 0 —2.0 0.0 2.0

In y
FIG. i. The real and imaginary parts of u (y) for the

matched-impedance case plotted as functions of lny, where
y =hl(co)/cp. Solid lines denote the theory, and symbols denote
the simulation results for a total of 32 diff'erent cases involving
the three models discussed in the text and diferent values of co.
Each symbol represents the average over forty configurations.

where m 1(3) denotes p or K ' for the first (third) model.
Since m3(x) is always a continuous function of x, the lo-
calization behavior of the third model has been shown to
diITer qualitatively from the other two. ' A total of 32
diA'erent cases, with frequencies ranging from ipco/cp—0.05 to lpco/cp —10, have been simulated. In all cases
the numerically calculated l(co) values have been used in
the evaluation of the variable y =hl(co)/cp. In Fig. 1 we
plot all the simulation data for u(y) and compare them
with the analytical prediction, Eq. (13). It is seen that
despite the fact that the data are from different models
and different frequencies, they all show excellent agree-
ment with each other and with the theory. While the in-
dependence of u(y) from the difterent types of model
and model parameters is implicit in our derivation and
therefore understandable, the validity of the result at all
frequency ranges is not anticipated. However, we ob-
serve that for classical waves in one dimension, l(co) is
always bounded below by a fairly large minimum value'
even for a medium with very large fluctuations in the
material parameters. That means that if we examine the
wave attenuation due to multiple scattering, then the di-
mensionless parameter Q

' =2cp/col (co) will have a
maximum value that is « I for all frequencies (Q is usu-
ally defined as the "quality factor"). We speculate that
the general condition for the validity of the theory is for
Q

' to be small, and that colo/cp«1 is just one realiza-
tion of the general condition. In any case, the compar-
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ison shown in Fig. 1 clearly demonstrates the general ap-
plicability of our result.

The knowledge of p(Z) has direct implications for the
measurement of l(co) in the time domain. In the case of
matched-impedance boundary condition, it indicates that
on measuring rN(r, to) at a certain frequency window,
one should observe a peak at some time ro that corre-
sponds to Z = 1. Thus, knowing the mean speed of the
random medium would yield l(co) =rpcp. If cp is not
known, one can still get a relative ratio of the localiza-
tion lengths for diA'erent random media by comparing
the peaking times. A curious corollary of our result is
that the maximum rN(r, to) value obtained for all one-
dimensional random systems should be the same, regard-
less of the magnitude of the material-parameter fluctua-
tions. However, for the medium with smaller random-
ness one has to wait longer before the maximum
rN(r, to) is achieved. For the pressure-release boundary
conditions, on the other hand, N(r, to) =z '4X=4cp/
l(co). That is, the noise spectrum is stationary. This
should be obvious since the pulse energy is trapped by a
totally reflecting boundary on the one end and by a
nonpenetrable random medium on the other. The locali-
zation length in this case is directly proportional to the
inverse of the noise spectrum and therefore can again be
determined directly in the time domain.

In summary, we have obtained an analytic solution to
the problem of pulse localization in one dimension and
demonstrated its general validity. Application of our ap-
proach to the problem of statistical data inversion is

presently being pursued.
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