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Absolute Instabilities and Self-Sustained Oscillations in the Wakes of Circular Cylinders
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The von Karman vortex street in the wake of a circular cylinder is shown to be due to an absolute in-
stability of the How in the near wake. A new means of instability analysis is used, involving mappings
from the complex k plane to the complex co plane.
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The onset and formation of coherent vortex structures
in shear flow is a problem of long-standing and current
interest in the dynamics of fluids and plasmas. For ex-
ample, they appear in the flow past a cylinder (von
Karman vortex street), the Kelvin-Helmholtz instability
in neutral plasmas, and the diocotron instability in non-
neutral plasmas. The appropriate, from first principles,
nonlinear dynamic equations, for the fluid or the plasma,
are much too difficult to solve, even numerically, to de-
scribe the detailed evolution of such structures. We
show here that the formation of the von Karman vortex
street can be understood in a new and rather simple way:
from a linear, space time stab-ility analysis of the aver
age flossy. The comparison between our experimental re-
sults and the relevant experimental features is excellent,
thus indicating that this approach may be useful in a
variety of other, similar physical problems.

Vortex streets are known to form in the wakes of cir-
cular cylinders for a wide range of Reynolds numbers
(roughly, from 40 to 300000). The mechanism of
vortex-street formation has been the subject of many in-
vestigations because of its importance for flow-induced
vibrational problems. ' In this Letter we report a new
approach in which the vortex-formation process is treat-
ed as a hydrodynamic instability of the cylinder wake,
and the distinction between absolute and convective in-
stabilities is used to elucidate experimental observations
of the phenomenon. Namely, the appearance of a vortex
street in a cylinder wake, seen as a self-sustained oscilla-
tion of the wake, is shown to be related to the issue of'

whether the wake instability is absolute or convective. In
an absolutely unstable wake, any initial disturbance will
grow in time and, after nonlinearities have saturated its
growth, will evolve into a self-sustained oscillation of the
wake. In a convectively unstable wake, all disturbances
will be carried away, leaving finally the wake undis-
turbed. The results of the stability analysis suggest that
the vortex street behind the circular cylinder is the non-
linear evol ut ion of the "preferred instability" mode
determined from a linear-stability analysis. Interesting-

ly, by the comparison of predictions of the linear-
stability analysis with experiments, it appears that the
frequency and wavelength of the "preferred instability"
mode found in the linear problem remain unchanged
throughout the nonlinear evolution of the instability, for
both laminar and turbulent wakes. Furthermore, cal-
culated shapes of the impulse response of the wake indi-
cate that the wake instability develops in time without
significant interactions with the cylinder itself.

Within the context of linear theory, the distinction be-
tween absolute and convective instabilities for a spatially
homogeneous medium can be made by the study of the
dispersion relation D(co, k) =0 of the medium, where co

is the frequency and k the wave number. I n general,
both co and k are complex. Let G(x, t) be the response
of the medium at a location x and time t to an impulsive
excitation applied at the origin. The response G(x, t) is
expressed by the Fourier-Laplace integral:

f P el (kX —
COI )

where L and F are appropriate integration contours in
the complex m and k planes, respectively. For most
physical problems, the double integral in (1) cannot be
easily evaluated for all I. In order to distinguish between
absolute and convective instabilities, however, we only
need to know the asymptotic behavior of G(x, t) for
large times. This time-asymptotic behavior of G (x, t)
can be determined by a well-known method of analytic
continuation, in which the Laplace contour L is de-
formed towards the lower half of the complex cu plane.
If L can be deformed below the real-co axis, the instabili-
ty is convective. Otherwise, G(x, t ~) is dominated
by the "pinch-point" singularity having the largest tem-
poral growth rate. This is the case of an absolute insta-
bility, where the real parts of the wave number and fre-
quency of the pinch point specify the "preferred instabil-
ity mode. "

The procedure described above requires one to obtain
from the dispersion relation the wave number k as a
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FIG. 1. Curve 1: image of the real-k axis in the co plane;
curves 2 through 6: images of lines parallel to the real-k axis.
The pinch point is located at the cusp of curve 6.

function of the frequency co. However, for the dispersion
relations resulting in the stability analysis of parallel
shear flows, it is easier to determine m as a function of k
than the other way around. We consider, therefore, that
the dispersion relation has been solved to yield co as a
function of k, and we seek an inversion of the previously
described analytic continuation that does not depend on
mapping from the co plane into the k plane. This is done
by the deformation of the F contour off the real-k axis in
such a way that its image in the co plane progresses
downward from the highest branch of the map of the
real-k axis (Fig. l). Double roots of the dispersion rela-
tion, (cop, ko), are easily detected by the local angle-
doubling property of the map: co —coo=(k —ko) . In
the simplest cases, absolute instabilities occur when the
deformed F contour maps into the complex m plane as
shown in Fig. 1, where the point mo is found to lie in the
upper-half co plane, beneath a single unstable branch of
the image of the real-k axis. The point coo, connecting
two Riemann sheets of the multisheeted co plane, is only
covered by the image of the real-k axis on one of these
two sheets. Thus if the L contour, deformed to pass
through coo, is mapped in the k plane, its image will

pinch the deformed F contour at ko. Consideration of
this simple topology is sufhcient for the stability analysis
of symmetric shear flows. The procedure for cases lead-
ing to mappings of higher topological complexity can be
found in the work of Kupfer, Hers, and Ram.

We consider the stability of the time-average flow in
the wake of a circular cylinder in steady flow. We define
the x axis to be parallel and the y axis normal to the on-
coming flow. The mean flow and the disturbances are
assumed to be two dimensional. Outside the cylinder's
boundary layer, the flow can be considered inviscid. For

=0, (2)

subject to the boundary conditions

f(y) 0 for ly I (3)

where f(y) is the stream function of the disturbance, U
the mean flow in the wake, and an upper prime stands
for differentiation with respect to y. For any given k,
Eqs. (2) and (3) define an eigenvalue problem for cu and
vice versa. Strictly speaking, the flow in the wake is not
parallel, as the use of Rayleigh s equation implies, but is

slowly diverging. However, as experimental measure-
ments of the average velocity distribution in wakes
show, the rate of change of the velocity profile in the x
direction is small. Therefore, we can assume that at
each location behind the cylinder, the flow is locally
parallel, and, consequently, that the mean velocity U is a
function of J only. Within the limits of this assumption,
a local-stability analysis can separately be performed at
each location behind the cylinder. The distribution of
the mean velocity U(y) in the wake is symmetric about
the x axis. Therefore the eigenvalue problem defined by
Eqs. (2) and (3) can be decomposed into two parts, or
modes: symmetric and antisymmetric. For the sym-
metric mode, we have f(y) =f( —y), and for the an-
tisymmetric mode, f(y) = f( —y). S—uperposition of
the vorticity of a symmetric mode to the initial antisym-
metric vorticity distribution leads to a staggered vortex
street; conversely, the antisymmetric mode would lead to
a symmetric vortex street. Thus, decomposition of the
disturbance stream function into symmetric and an-
tisymmetric parts proves very helpful in the explanation
of why vortex streets are always staggered.

For an arbitrary U(y), the eigenvalue problem must
be solved numerically. In Ref. 2, a fourth-order-
accurate finite-difference scheme was used to approxi-
mate the derivatives of the stream function in Rayleigh's
equation. Thus, together with the boundary conditions
and the symmetry or antisymmetry of the stream func-
tion, the problem was reduced to a generalized matrix ei-
genvalue problem, that was solved to yield co as a func-
tion of k. The stability of experimentally measured ve-
locity profiles of cylinder wakes was made with use of
data for laminar wakes provided in Kovasznay, and
data for turbulent wakes provided in Cantwell. The re-
sults of the stability analysis are summarized below.

We first discuss the results for laminar wakes. Ko-
vasznay has provided extensive measurements of the
average velocity in the wake of a circular cylinder at
Reynolds numbers 34 and 56. When the Reynolds num-
ber is equal to 56, the wake of the cylinder is unstable,
and a laminar vortex street is formed. When the Rey-

any inviscid parallel shear flow, the dispersion relation
consists of the Rayleigh equation:

[kU(y) —c0] [f"(y) —k f(y)] —kf(y)U" (y)
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nolds number is equal to 34, the wake of the cylinder is
unstable, but no vortex street is formed. This qualita-
tively diferent behavior of two apparently similar situa-
tions can be explained by the examination of the physical
character of the wake instability. When the Reynolds
number is equal to 34, the results of the stability analysis
indicate that the wake instability is convective at any lo-
cation behind the cylinder. Thus, in agreement with
Kovasznay's observations, in absence of a permanent
external excitation, all randomly excited disturbances are
convected away, leaving the wake undisturbed. When
the Reynolds number is equal to 56, however, the stabili-
ty analysis indicates that the near wake, i.e, the wake im-
mediately behind the cylinder, is absolutely unstable in
the symmetric stream-function mode (the one that pro-
duces a staggered vortex street). Farther away from the
cylinder, the instability gradually changes into convec-
tive again. Therefore, the following mechanism of
vortex-street formation is suggested: Disturbances in the
near wake, which are absolutely unstable, lead eventual-
ly to the development of a self-sustained oscillation. The
self-sustained oscillation of the near wake serves as an
oscillatory source of excitation for the rest of the wake,
which is only convectively unstable, and merely responds
to the excitation provided by the near wake. Thus the
frequency of the vortex street is selected in the near
wake, whereas the wavelength of the vortex street varies
along the wake, as the local dispersion relation requires
at each location. The theoretically predicted frequency
from the detailed stability analysis yields a Strouhal
number equal to 0.13. The experimentally recorded
value of the Strouhal number for this Reynolds number
is also 0.13.

We now discuss the results for turbulent wakes.
Cantwell has provided measurements of the time-
average velocity distribution in the wake of a circular
cylinder at Reynolds number equal to 140000. At this
Reynolds number, a turbulent vortex street is formed.
Following Ho and Huerre, it was assumed that the tur-
bulent vortex street results from the instability of the
time-average (or "pseudolaminar") flow in the wake.
The direct eAect of the small-scale turbulence on the
evolution of the instability was neglected. The presence
of the small-scale turbulence was acknowledged, howev-
er, indirectly, as it aAects the form of the time-average
velocity profile. By the instability analysis described
above, the physical mechanism of vortex-street formation
in turbulent wakes is found to be the same as the one in
laminar wakes. Namely, it is found that the time-
average fIow in the near wake presents an absolute insta-
bility in the symmetric-function mode, which excites the
rest of the wake. The detailed stability analysis predict-
ed a frequency of vortex-street formation giving a
Strouhal number equal to 0.21. Cantwell has reported
a Strouhal-number value, uncorrected for blockage
eA'ects, equal to 0.18. Roshko, ' who has summarized
the results of several investigations, gives a Strouhal
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FIG. 2. Time-asymptotic form of the unstable disturbance
for Reynolds numbers 56 and 140000, respectively (Ref. 11).
Note, cu;t =ln

i G(x, t ~)
i (Ref. 3).

number equal to 0.20. Therefore, as for laminar wakes,
theory and experiment are in good agreement.

In the stability analysis of the cylinder wake, the
eAect of the presence of the cylinder itself on the devel-
opment of the instability was neglected. A justification
for this approach can be sought in the way that the im-
pulse response of the wake evolves in time. As shown in
Ref. 3, the time-asymptotic shape of the response is self-
similar and can be determined by finding the imaginary
part, cu;, of the pinch-point frequency, as seen by ob-
servers moving at various speeds. The time-asymptotic
shape of the disturbance has been calculated'' for Rey-
nolds numbers 56 and 140000, and the results are shown
in Figs. 2(a) and 2(b), respectively. In both figures, it
can be seen that the response propagates mainly down-
stream of the cylinder with only a very small portion of
the response propagating towards the cylinder at a very
low speed. Consequently, in laminar and turbulent
wakes alike, the instability of the wake of the cylinder
develops downstream of the cylinder, without significant
interactions with the cylinder itself. This result supports
the assumption made earlier by Abernathy and Kro-
nauer, ' that formation of vortex streets in a wake occurs
independently of the object producing the wake.
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In conclusion, linear stability analysis of the time-
average flow in the wake of a circular cylinder oflers a
relatively simple way of understanding the dynamics of
the wake. In particular, by the investigation of whether
the instability is absolute or convective, the ability of the
wake to develop self-sustained oscillations is determined.
Absolute instabilities are shown to be established un-
equivocally by mapping, through the dispersion relation,
from the k plane into the m plane. For fluid-mechanics
problems, this procedure is much easier to implement
than the usual reverse mapping. The vortex street in the
wake of a circular cylinder is found to form as a result of
an absolute instability in the near wake. The unstable
disturbances in the near wake propagate mainly down-
stream of the cylinder and excite the rest of the wake.
The frequency of the preferred instability mode predict-
ed by a linear stability analysis is in good agreement
with the experimentally recorded frequency for low and
high Reynolds numbers. The good agreement between
the results of the linear stability analysis and experirnen-
tal observations suggests that the present methodology
could, potentially, be applied to a variety of phenomena
in flow transition and turbulence.
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