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Observation of Nonclassical Effects in the Interference of Two Photons
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By measuring the joint probability for the detection of two photons at two points as a function of the
separation between the points, we have demonstrated the existence of nonclassical eAects in the interfer-
ence of signal and idler photons in parametric down-conversion. In principle, the detection of one photon
at one point rules out certain positions where the other photon can appear.

PACS numbers: 42.50.Wm, 42.65.—k

It has long been known that an optical field can exhib-
it nonclassical interference eA'ects of the fourth order in
the absence of the more Usual second-order interference.
We wish to report the observation of such an eAect. As
an example, let the field produced by two (secondary)
sources 2 and B be detected at some point x ~ in a distant
plane (see Fig. 1). If we may simplify the situation so as
to consider only a single-mode contribution of each
source (a more realistic treatment is given by Mandel

and co-workers' ), we can express the positive-
frequency part of the field E (x 1 ) in the form
(Hilbert-space operators are identified by the caret)

1(x ) —a e A Al+ a e~ 8 ~BI

where k~ and k~ are wave vectors, r~ i and rB i are dis-
placements shown in Fig. 1, and a~, a~ are photon an-
nihilation operators. The probability Pl(xl)8xl of pho-
todetection at xl within some narrow range 6xl is then
given by

Pl(xl)6xl =Kl[(E (xl)E (xl))]6xl =Kl[(a aA)A+(a att)t+t(a aA)tet' "' "' " "' +c.c.]Bxl, (2)

where K ~ is a scale factor characteristic of the detector.
To make the calculation more explicit, we now sup-

pose that A and B correspond to the signal and idler
modes produced in the process of degenerate parametric
down-conversion in a nonlinear medium. In this process
a pump photon fissions into a signal and an idler photon,
and the appropriate down-converted state is the two-
photon Fock state ! IA, ltt). The expectations in Eq. (2)
are then easily evaluated and the probability reduces to

P 1 (x 1 )Bx 1
=2K16x 1, (3)

so that there is no interference or any periodic variation
of Pl(xl) with xl. If a similar measurement is made at

P2(x2)~x2 2K2~x2.

The fundamental reason for the absence of second-order
interference is, of course, that the two down-converted
photons have no definite phase relationship.

Nevertheless, a fourth-order interference eAect, in-
volving measurements with two detectors, exists. Thus
we may choose to use two photodetectors at positions x

&

and x2 to measure the joint probability P12(xl, x2)6'xl
XSx2 of detection at xl and x2 within Sxl and 6x2, in
which case

P12(x lix2)~x l~x2 K1K2(E (x1)E (x2)E (x2)E (x 1 ))~x 1~x2.

With the help of Eq. (1) we obtain for the same two-photon state ! 1A, 1tt) ' '

P12(x 1 x2)~x 1 ~x2 2K1K2~x 1~x2[1 +cos[kA (rA2 rA 1)+ ktt (rtt 1 rB2) ji

=2K1K26x16x2 [I +cos2tr(x 1

—x2)/Ll,

where L = X/0 is the spacing of the classical interference
fringes that correspond to the geometry of Fig. 1, i.e.,
two waves of wavelength k coming together at a small
angle 0. Because of the cosine term, this probability ex-
hibits interference with a relative depth of modulation
g = 100%, and has certain nonclassical and nonlocal
features, particularly when ! xl —x2! =(n+ —,

' )L (n =0,
1,2, . . . ), in which case P12(xl, x2) =0. In essence there
is an interference between two two-photon probability
amplitudes, because the apparatus cannot distinguish be-

xi

I IG. 1. The geometry of the interference experiment.
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tween photons from A and B being detected at x1 and

x2, respectively, or vice versa. Despite the fact that any
one photon can be detected at any position x, we see that
if the photon is detected at x1, there are certain positions
x2 where the other photon can never be found. However,
if x1 were displaced by 2 L, the other photon could show

up at previously forbidden positions, x2. This would be

so even if the two detections were disjoint, so that a type
of nonlocal phenomenon is encountered.

Let us contrast this with the situation in classical op-
tics. If the fields E + (x~),E + (xq) in Eqs. (1) to (5)
are classical c-number fields, and it is assumed that the
sources are randomly phase so that they do not produce
second-order interference eNects, we readily find that Eq.
(5) leads to'

2(!a~! ! ag! ) 2n(xf x2)
P~2(x~, x2)6x~8x2=2K~K26x~8x2 1+

!
2 2 z

cos+ aa L
(7)

in which the "visibility" or relative modulation is always less than or equal to 50%. As a result, the joint probability
P~2(x&, x2)8x~6xq can never vanish in classical optics, because there is a nonvanishing optical field at both positions x ~

and x 2.
Of course, in practice, measurements are not made at a point, but extend over noninfinitesimal regions hx centered at

x~ and x2, so that we ought to integrate the foregoing expressions over hx. From Eqs. (3) and (4) the measured proba-
bilities P~(x~) and P2(xz) are therefore related to P~(x&)6x~ and P2(x2)Sx2 by

P)(x)) =2K)&x, P2(x2) =2Kphx,

and from Eq. (6) the measured joint detection probability P~q(x~, x2) is given by

px, +(1/2)ax r x,+(1/2)ax sinzhx/LPJ2(xi x2) J t y ) J t g ) Pi2(x/ xp)dxi dx2 2K&K&(AX) 1 +
' 2

cos
2x(x (

—x2)
L

As a consequence of the finite detector width hx, the rel-
ative modulation rl has been reduced from 1 to [sin(+Ax/
L)/(~Ax/L)l . Once again, it follows with the help of
Eq. (7) that the maximum g would be half as great for a
classical field.

We wish to report an experiment in which this non-
classical efIect has been observed in the interference of
signal and idler photons produced in the degenerate
parametric frequency splitting of light. The two-photon
state ! 1~, 1~) is created in the down-conversion of a

pump photon, and an equation very similar to Eq. (6)
can be derived from a more realistic treatment of the
problem.

An outline of the experiment is shown in Fig. 2. The
light from an argon-ion laser oscillating on the 351.1-nm
line falls on a 1.5-cm-long nonlinear crystal of LiIO3,
where some incident photons split into two half-

!
frequency signal and idler photons, which emerge at an-
gles of ~ 3.3 to the pump beam. A beam stop deflects
the latter, while two mirrors Ml and M2 cause the
down-converted photons to come together at an angle
0=2 and interfere in a plane distant 1. 1 m from the
crystal, after passing through an interference filter. Any
interference pattern formed in this plane is magnified
and reimaged by the lens shown, so as to make the fringe
spacing L =0.34 mm. Two movable glass plates, each
of thickness Ax = 0.14 mm, collect the incoming photons
at x1 and x2 edge on, and direct them to two counting
photomultipliers, whose pulses, after some amplification
and shaping, are fed to the start and stop inputs of a
time-to-digital converter. Pulse pairs arriving within a
5-nsec interval are treated as "coincident" for the pur-
pose of the measurement. When accidental coincidences
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FIG. 2. Outline of the apparatus.
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TABLE 1. Experimental results. Accidental coincidence rate = (18.2 ~ 0.3)/h.

~x, —x, ~/L

0.41
0.50
1.00

No. of
coincidences

215 in 10 h

178 in 9h
354 in 13 h

Measured
coincidence rate

(h-')

21.5 ~ 1.5
19.8 ~ 1.5
27.2+ 1.4

Measured —accidental
coincidence rate

(h -')
3.3 ~ 1.5
1.6 ~ 1.5
9.0 + 1.4

are subtracted out, the rate of coincidence counting pro-
vides a measure of the joint probability P(x~, xq), up to a
scale factor. To determine the expected number of ac-
cidentals, we treat the number of photon pairs registered
with delays ranging from 35 to 75 nsec as accidental
coincidences. When this number is multiplied by 40, it
yields the expected number of accidentals within the 5-
n sec resolving time. The accidental coincidence rate
determined in this way was (18.2+'0.3)/h, in reasonable
agreement with what would be expected from the aver-
age counting rates 1003/sec and 1000/sec of the two
photodetectors. The corresponding dark counting rates
were 83/sec and 64/sec.

The numbers of coincidences registered in approxi-
mately 10-h-long counting intervals, and the correspond-
ing counting rates, are shown in Table I for several
diferent values x~ —x2. Because of the 0.14-mm thick-
ness of the plates, the minimum value of x~ —x2 was
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0. 14 mm, corresponding to (x~ —x2)/L =0.41, and the
geometric factor t) = [sin(+ax/L)/(rr/5x/L)] was 0.55.
The full curve in Fig. 3 is a plot of P(x~, xq) given by
Eq. (9), with the scale factor K~K2 adjusted arbitrarily
to give best agreement with the measured coincidence
rates. The broken curve in Fig. 3 is the corresponding
prediction from classical probability theory, when the
relative modulation amplitude has its maximum value
0.275, and with the scale constant adjusted for best fit.
It is apparent that the classical prediction provides a
much poorer fit.

From the differences between the experimental points
and the classical and quantum theoretical predictions, we
have calculated the value of X, and have used this to test
the hypothesis that one or the other theory is satisfied.
We find that XqU 0 44 and X,~», =4.9. The probabili-
ties of encountering this large a value of X by chance
are Prob(Z ~ 0.44) = 0.92 and Prob(X ~ 4.9) = 0.18.
To within the statistical uncertainties, we have therefore
demonstrated that classical probability is violated and
quantum mechanics is obeyed in this interference experi-
ment.

It is shown elsewhere that a violation of one form of
Bell's inequality should be demonstrable in a slightly
diA'erent form of interference experiment.

This work was supported by the National Science
Foundation and by the U.S. 0%ce of Naval Research.
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FIG. 3. Experimental results superimposed on the predic-
tions of quantum theory given by Eq. (9) (full curve), and of
the classical theory with maximum modulation (dashed curve).
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