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Using a hybrid molecular-dynamics simulation of lattice QCD, we measure the spatial screening
lengths of local meson and baryon operators with two flavors of Kogut-Susskind fermions. In the high-
temperature phase the meson and nucleon screening lengths are parity doubled and their inverses are
comparable to the zero-temperature masses. We construct chiral projections for the meson and nucleon
propagators which demonstrate the chiral symmetry in a way independent of the extraction of masses

from the propagators.
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QCD with two flavors of massless quarks has a chiral
flavor SU(2), ® SU(2)g symmetry. If the symmetry
were manifest, the isotriplet pseudoscalar = and the iso-
singlet scalar o would be degenerate since they belong to
the same (¥, %) representation of SU(Q2), ®SUQ)g.
Also, the nucleon would be either massless or degenerate
with an opposite-parity partner.! Studies of lattice QCD
have shown that for massless quarks chiral symmetry is
restored at high temperature,? as indicated by the van-
ishing of (yy) as the quark mass goes to zero. Recently
DeTar and Kogut® have measured the spatial screening
lengths for hadronic operators at finite temperature us-
ing four flavors of Kogut-Susskind fermions. This is one
generalization to finite temperature of the zero-tem-
perature hadron masses, and unbroken symmetries of the
finite-temperature theory are reflected in degeneracies of
the screening lengths. These screening lengths are not
necessarily the same as the masses of the corresponding
excitations defined by real-time correlation functions.
However, for brevity we will refer to high-temperature
masses, by which we mean inverse screening lengths.

We have measured mesonic and baryonic screening
lengths with two flavors of dynamical Kogut-Susskind
fermions on an 8%x 24 x4 lattice for quark masses of 0.1,

0.05, and 0.025. From our previous simulations of QCD N

thermodynamics? we know the value of 6/g2 for the

crossover to high-temperature behavior for each of these
quark masses at N,=4 and 6. (Even for quark masses
for which we do not clearly see a phase transition, the
crossover is sufficiently sharp to define a crossover value
of 6/g2) Most of our screening-length measurements
were done at the crossover value of 6/g? for N,=6.
Since we were using N,=4, this corresponds to a tem-
perature of 1.57,, well into the high-temperature phase.
We measured the spatial correlation functions corre-
sponding to 7, o, p, A1, and B mesons as well as nucleons
of both parities. These operators can be measured with
source operators at a single lattice point and so are easier
to measure than ‘“‘nonlocal” operators. We have also
measured these hadrons’ zero-temperature masses on
83x24 and 10°x24 lattices at the same values of 6/g2,
quark mass, molecular-dynamics time step, conjugate-
gradient residual, and, in the case of the 8324 lattices,
x and y spatial sizes. This allows us to make compar-
isons in which many of the systematic errors cancel.

The reader is referred to Kluberg-Stern er al.,* Gil-
christ er al.,* and Morel and co-workers* for the con-
struction of the meson and baryon operators with Kogut-
Susskind fermions. The meson and nucleon propagators
are conventionally fitted by the forms

MG)=dle ™ +e "M T4 (= 1)2 A0~ e PN (1)

B(z)=Ale ™ +(—1)2 ™M _(—1)2fle V4 (—1)% "N, 2)

where the tildes indicate particles of opposite parity. The boundary conditions for the quark hopping matrix are an-
tiperiodic in 7 and periodic in the spatial directions, which makes the nucleon propagator antiperiodic in 7. Since
N.=4, the contribution from the =2 slice vanishes from the antiperiodicity, and since we use only x, y, 7 even in our
nucleon propagators, only the 7 =0 slice actually contributes to our high-temperature results.

The propagators at different values of z are strongly correlated, and this must be taken into account when we fit the
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TABLE I. Estimates for the = and o masses and their differences in each phase. The bare
quark mass is my; and Am =m,—m,. Both positive- and negative-parity nucleon masses and
their differences are also tabulated. The errors on the mass differences are statistical only, and
include the effects of correlations between the two masses.

High temperature

Low temperature

my My me Am My me Am
0.10 1.086(2) 1.188(2) 0.102(2) 0.826(1) 1.250(7) 0.424(7)
0.05 0.993(2) 1.034(3) 0.041(2) 0.614(1) 1.103(14) 0.489(14)
0.025 0.937(3) 0.955(3) 0.018(1) 0.451(1) 0.949(15) 0.498(15)

my my mpy Am my my Am
0.10 2.38(3) 2.38(4) 0.005(30) 1.98(2) 2.22(7) 0.25(9)
0.05 2.42(8) 2.43(8) 0.014(30) 1.67(8) 2.20(28) 0.52(33)
0.025 2.19(6) 2.21(6) 0.018(10) 1.56(23) 2.24(51) 0.68(64)

propagators. Let M, be the propagator found in the
simulation and M(z) be that calculated from Eq. (1).
x? and the covariance matrix C, are defined by

-1
=3 IM ) = M1 ) — M), 3)
xy
Cay =UM M) — (M XM,))(N—1) L. @

Here NV is the number of data points and (M)=(1/
N)Y N ,M;. With this definition x? has its usual inter-
pretation as an indicator of the goodness of fit. Similarly
the errors on the parameters and the correlations among
the parameters are described by the matrix of second
derivatives of X2 with respect to the parameters. Since
the parameters are correlated, the error on a combina-
tion of parameters such as a difference of two masses is
not equal to the naive combination of the errors. When
we quote mass splittings these correlations are taken into
account in the errors. To estimate a mass or screening
length, we fit the data for z >z, and increase zp;,
from zero until the X% becomes comparable to the num-
ber of degrees of freedom. We also require that the
mass be reasonably constant as z,, increases.

The n and o masses at low and high temperatures, as
well as the mass splittings, are tabulated in Table I. As
usual, we vary 6/g? as we vary the quark mass so that
the high-temperature results are always at 1.57..° (T,
is, of course, not necessarily constant in physical units as
my varies.) The low-temperature results are obtained on
an 83x24 lattice at the same values of 6/g2 as the high-
temperature results. (We choose the 83x24 lattices for
the low-temperature masses rather than the 10°x24 lat-
tices so that the smallest spatial size will be the same as
in our high-temperature data.) As m,— 0 the zero-
temperature pion mass goes to zero as (m,)'2, but the
high-temperature screening mass remains large. The
high-temperature 7 and o masses converge to a common
finite value as the quark mass decreases, in contrast to
the low-temperature masses. In Fig. 1 we plot the x and
o masses versus 6/g? for fixed quark mass 0.05 and lat-
tice size 82x24x4. The large error bars on the o mass
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at low temperatures reflect the difficulty of measuring
this propagator.

When the chiral symmetry is unbroken the hadronic
operators are conveniently written in terms of chiral pro-
jections such as yI'(1% ys)y, where I' is some Dirac
matrix. Such a projection contains equal contributions
from particles of both parities and the absence of one of
the two chiralities in a propagator demonstrates the pari-
ty doubling of both masses and amplitudes in that chan-
nel. The remaining chiral symmetry for massless Kogut-
Susskind fermions rotates the one-component Grass-
mann variables in opposite directions on odd and even
lattice sites. On a lattice of spacing 2a, these variables
correspond to four flavors of four-component quarks.
Following the analysis and notations of Kluberg-Stern et
al. and Billoire et al.* this rotation is exp(ifysx y¥),
where the first ys operates on the Dirac index and the
second on the flavor index of the four-component quark
fields. (Although we have used the square root of
the Kogut-Susskind fermion determinant in our con-
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FIG. 1. n and o masses in units of the lattice spacing vs

temperature for quark mass of 0.05. Here N, =4 so that vary-
ing of 6/g? is equivalent to varying of temperature. The
squares are the = and the crosses the . The crossover temper-
ature and 1.5 times the crossover temperature are marked with
arrows.
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figuration weighting to simulate two flavors, we can still
construct the meson correlation functions for the original
four flavors. Roughly speaking, we have two flavors of
dynamical quarks but four flavors of valence quarks.)
The mesonic correlation functions which are eigenvectors
of this chiral rotation are obtained by insertion of

1x1 % ysxy¥ in the operators. In terms of the weight
vectors on the lattice, this is a factor of
1+ (= 1)*t*2%7 which projects out even or odd lattice
sites, as expected from the transformation properties of
the original Grassmann variables. Therefore we look at
linear combinations of the usual local mesonic correla-
tion functions®:

M()i —Mpsi(_l)zMSC= Z |M_l(0,x)12[1 =+ (_l)x+y+:+r]’

Xy,

(5)

M= =Myr £ (= D*Mpy=3 | M 7100 | 2[(= 1D+ (= D+ (= D1 £ (= D)xHrHete,

xX),T

where M is the Kogut-Susskind fermion matrix. For the
low-temperature masses z and 7 are interchanged.

If the limit my;— O can be taken naively M ~'(0,x)
will vanish when x is an even site. This can be seen by
our writing M ~'(0,x) as (1/M *M)M'5(0). MM only
connects even sites to even sites and odd sites to odd
sites. M ' has elements of order 1 connecting site O to its
neighbors, which are odd sites, and a diagonal element
2mga. Thus, unless 1/M*M blows up too fast as
mg— 0, (/M *M)IMT5(0) will vanish on even sites as
mg— 0. In this case only the chiral projections contain-
ing 1—(—=1)***2%7 will survive. Since each chiral
projection contains both parities this implies parity dou-
bling in terms of the conventional correlation functions.
Indeed, it implies that all particle masses in the channel
as well as their amplitudes with the local source §(0) are
also doubled. When the chiral symmetry is spontaneous-
ly broken, the limit m,— O cannot be taken naively, the
above argument fails, and the masses need not be dou-
bled. Examination of the ratio of the two chiral projec-
tions provides a test of the parity doubling which is in-
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distance
FIG. 2. Ratios of the chiral projections for the spin-0
mesons. The crosses indicate high-temperature ratios for

mg =0.1, 0.05, and 0.025. The five closely superimposed plots
are low-temperature ratios. The squares are ratios with
mg =0.05 and 0.025 from an 83x24 lattice. The octagons are
for quark masses of 0.1, 0.05, and 0.025 on a 103x 24 lattice.

dependent of the difficult and ambiguous process of es-
timating masses from the propagators.

In Fig. 2 we plot the ratio of the two chiral projections
for the spin-0 mesons as a function of distance with three
different quark masses at low and high temperatures. It
can be seen that this ratio is going to zero with the quark
mass at high temperature but remaining constant at low
temperatures. For any finite m, this ratio will approach
1 at large enough distance because the parity doubling is
not exact.

In Fig. 3 we show a similar plot for the spin-1 mesons.
Again it can be seen that the ratio is vanishing at high
temperature. However, it is also sensitive to the quark
mass at low temperature. To clarify this we plot in Figs.
4(a) and 4(b) the ratio as a function of quark mass at
distances 1 and 2. Again, the ratio is clearly vanishing
at high temperature but appears to be going to a finite
limit at zero temperature.

If the nucleons are massive in a chirally symmetric
phase, we will have parity doubling. In Table I we show
the estimates for positive- and negative-parity nucleon
masses and their differences in both phases, showing de-
generacy at 1.57,.. These mass estimates were obtained
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FIG. 3. Ratios of the chiral projections for spin-1 mesons.
The meaning of the symbols is the same as in Fig. 2.
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FIG. 4. Ratios for the spin-1 propagators as a function of
quark mass at distances (a) 1 and (b) 2. The meaning of the
symbols is the same as in Fig. 2.

by our fitting the propagators with the form of Eq. (2),
with one mass for each parity, using data with z,;, =5.
While this is not the best way of extracting the nucleon
mass, it is appropriate here because it treats both parities
equally and can be consistently applied to both our high-
and low-temperature data.

The nucleon correlation function involves M ~'(0,x)
only for x +y+ 7, even, so that if chiral symmetry is un-
broken we expect it to vanish at even z distances. As
with the mesons, this implies parity doubling of all
masses and amplitudes in this channel. In Figs. 5(a) and
5(b) the high- and low-temperature nucleon propagators
at distances 2 and 4 are plotted versus quark mass.
These graphs show the vanishing of the even-distance
propagators as m,; — 0 in the high-temperature phase in
contrast to the low-temperature phase where a spontane-
ous chiral-symmetry breaking remains at m, =0.

The spatial correlation functions of color-singlet had-
ron operators at high temperatures show degeneracies
corresponding to the restoration of chiral symmetry.
The = screening mass is equal to the o screening mass
and comparable to the screening masses of other mesons.
The nucleon screening length is also short in the chirally
symmetric phase, and parity doubling is realized both for
masses and amplitudes. These results must be under-
stood in the context of our recent measurement of the
response of the quark number to an infinitesimal chemi-
cal potential, which showed that the carriers of baryon
number can be easily added to the high-temperature
phase.” Thus the smallness of the screening lengths does
not indicate that the masses of the elementary excita-
tions will be large.
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FIG. 5. Nucleon correlation functions at distances (a) 2 and
(b) 4 vs quark mass. The lozenges are the high-temperature
points and the squares the low-temperature points.
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